Unsolved Problems in Combinatorial Games

  • Richard K. Guy
Part of the Mathematics and Its Applications book series (MAIA, volume 329)


We have retained the numbering from the list of unsolved problems given on pp. 183–189 of Amer. Math. Soc. Proc. Sympos. Appl Math. 43(1991) and added in some new material. For many more references than we list, see Fraenkel’s Bibliography.


Game Theory Directed Acyclic Graph Winning Strategy Graph Game Combinatorial Game 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Dean Thomas Allemang, Machine Computation with Finite Games, M.Sc. thesis, Cambridge University, 1984.Google Scholar
  2. [2]
    L. V. Allis, H. J. van der Herik & M. P. H. Huntjens, Go-Moku and Threat-Space Search, CS-report, Univ. of Limburg, 1992Google Scholar
  3. [3]
    Richard Bruce Austin, Impartial and Partisan Games, M.Sc. thesis, University of Calgary, 1976.Google Scholar
  4. [4]
    Robbie Bell & Michael Cornelius, Board Games Round the World, Cambridge Univ. Press, 1988.Google Scholar
  5. [5]
    Elwyn Ralph Berlekamp, Blockbusting and Domineering, J. Combin. Theory Ser. A, 49 (1988) 67–116.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Elwyn Ralph Berlekamp, John Horton Conway & Richard Kenneth Guy, Winning Ways for your Mathematical Plays, Academic Press, 1982.zbMATHGoogle Scholar
  7. [7]
    Elwyn Ralph Berlekamp & David Wolfe, Mathematical Go, A. K. Peters, 1994.zbMATHGoogle Scholar
  8. [8]
    Jack Botermans, Tony Burrett, Pieter van Delft & Carla van Splunteren, The World of Games, Facts on File, New York & Oxford, 1989.Google Scholar
  9. [9]
    Charles L. Bouton, Nim, a game with a complete mathematical theory, Ann. of Math., Princeton (2), 3(1901–02), 35–39.MathSciNetGoogle Scholar
  10. [10]
    John Horton Conway, On Numbers and Games, London Math. Soc. Monograph 6, Academic Press, 1976.Google Scholar
  11. [11]
    John Horton Conway & Neil J. A. Sloane, Lexicographic codes: error-correcting codes from game theory, IEEE Trans. Info. Theory, IT-32 No. 3 (May, 1986 ) 337–348.MathSciNetCrossRefGoogle Scholar
  12. [12]
    Robert T. Curtis, A new combinatorial approach to M 24 , Math. Proc. Cambridge Philos. Soc., 79 (1976) 25–42.MathSciNetCrossRefGoogle Scholar
  13. [13]
    Robert T. Curtis, The maximal subgroups of M 24 , Math. Proc. Cambridge Philos. Soc., 81 (1977) 185–192.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Robert T. Curtis, The Steiner system S(5,6,12), the Mathieu group M12 and the “kitten”, in Computational Group Theory (Durham, 1982) 353–358, Academic Press, London & New York, 1984 ).Google Scholar
  15. [15]
    Thomas Rayner Dawson, Problem 1603, Fairy Chess Review, (Dec. 1934) p. 94.Google Scholar
  16. [16]
    Thomas Rayner Dawson, Caissa’s Wild Roses, 1935, p. 13.Google Scholar
  17. [17]
    Blanche Descartes, Why are series musical? Eureka, 16(1953) 18–20; reprint ibid. 27 (1964) 29–31.Google Scholar
  18. [18]
    Henry Ernest Dudeney, The Canterbury Puzzles and other Curious Problems, Nelson, London, 1907; reprinted Dover, New York, 1958, pp. 118, 220.Google Scholar
  19. [19]
    Noam D. Elkies, On numbers and endgames — work in progress, July 1994.Google Scholar
  20. [20]
    Thomas S. Ferguson, On sums of graph games with the last player losing, Intemat. J. Game Theory, 3(1974) 159–167; MR 52 #5046.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    Aviezri S. Fraenkel, Selected bibliography on combinatorial games and some related material, in Richard K. Guy (editor), Combinatorial Games, Proc. Sympos. Appl. Math., 43 (1991) 191–226.Google Scholar
  22. [22]
    Aviezri S. Fraenkel, Alan Jaffray, Anton Kotzig & Gert Sabidussi, Modular Nim, Theoret. Comput. Sci., (1995) (to appear)Google Scholar
  23. [23]
    Aviezri S. Fraenkel & Anton Kotzig, Partizan octal games: partizan subtraction games, Intemat. J. Game Theory, 16 (1987) 145–154.CrossRefGoogle Scholar
  24. [24]
    David Gale & A. Neyman, Nim-type games, Internat. J. Game Theory, 11 (1982) 17–20.MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    Anil Gangolli & Thane Plambeck, A note on periodicity in some octal games, Internat. J. Game Theory 18 (1989) 311–320.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    Patrick Michael Grundy, Mathematics and games, Eureka, 2(1939) 6–8; reprint ibid. 27 (1964) 9–11.Google Scholar
  27. [27]
    Patrick Michael Grundy & Cedric Austen Bardell Smith, Disjunctive games with the last player losing, Proc. Cambridge Philos. Soc., 52(1956), 527–533; MR 18, 546.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Richard Kenneth Guy, Twenty questions concerning Conway’s Sylver Coinage, Amer. Math. Monthly, 83 (1976) 634–637.MathSciNetCrossRefGoogle Scholar
  29. [29]
    Richard Kenneth Guy, John IsbelPs Game of Beanstalk and John Conway’s Game of Beans-Don’t-Talk, Math. Mag., 59(1986) 259–269 [William Jockusch, Carleton College MN has corrected the tentative tables on p. 262].MathSciNetzbMATHCrossRefGoogle Scholar
  30. [30]
    Richard Kenneth Guy (editor), Combinatorial Games, Proc. Sympos. Appl Math., 43, Amer. Math. Soc., Providence RI, 1991.Google Scholar
  31. [31]
    Richard Kenneth Guy & Cedric Austen Bardell Smith, The G-values for various games, Proc. Cambridge Philos. Soc., 52(1956) 514–526; MR 18, 546.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    John Charles Kenyon, Nim-like games and the Sprague-Grundy Theory, M.Sc. thesis, Univ. of Calgary, 1967.Google Scholar
  33. [33]
    Donald Ervin Knuth, Surreal Numbers, Addison-Wesley, Reading MA, 1974.zbMATHGoogle Scholar
  34. [34]
    Maurice Kraitchik, Mathematical Recreations, Geo. Allen & Unwin, 1941; 2nd ed. Dover, 1953.Google Scholar
  35. [35]
    Hendrik Willem Lenstra, Nim multiplication, Séminaire de Théorie des Nombres, exposé No. 11, Université de Bordeaux, 1977.Google Scholar
  36. [36]
    Sam Loyd, Cyclopedia of Tricks and Puzzles, New York, 1914, p. 232.Google Scholar
  37. [37]
    David Moews, Sums of games born on days 2 and 3, Theor. Comput. Sci., 91 (1991) 119–128.MathSciNetzbMATHCrossRefGoogle Scholar
  38. [38]
    Richard Joseph Nowakowski, Welter’s Game, Sylver Coinage, Dots-and-Boxes, in Richard K. Guy (editor), Combinatorial Games, Proc. Sympos. Appl Math., 43 (1991) 191–226.Google Scholar
  39. [39]
    Thane E. Plambeck, Daisies, Kayles, and the Sibert-Conway decomposition in misere octal games, Theoret. Comput. Sci., 96 (1992) 361–388.MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    Vera Pless, Games and codes, in Richard K. Guy (editor), Combinatorial Games, Proc. Sympos. Appl Math., 43 (1991) 191–226.Google Scholar
  41. [41]
    Lloyd S. Shapley, The invisible chessboard (preprint).Google Scholar
  42. [42]
    William L. Sibert & John H. Conway, Mathematical Kayles (with a postscript by Richard K. Guy), Intemat. J. Game Theory, 20 (1992) 237–246.MathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    Roland Percival Sprague, Bemerkungen über ein spezielle Abelsche Gruppe, Math. Z. 51(1947) 82–84; MR 9, 330–331.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    Roland Percival Sprague, Über mathematische Kampfspiele, Tôhoku Math. J., 41(1935–36), 438–444; Zbl, 13, 290.Google Scholar
  45. [45]
    Hugo Steinhaus, Definicje potrzebne do teorji gry i poscigu, Myśl. Akad. Lwów, 1 (1925) #1, 13–14; reprinted, Definitions for a theory of games and pursuit, Naval Res. Logist. Quart., 7 (1960) 105–108.Google Scholar
  46. [46]
    Walter Stromquist & Daniel Ullman, Sequential compounds of combinatorial games, Theoret. Comput. Sci., 119 (1993) 311–321.MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    J. Ulehla, A complete analysis of von Neumann’s Hackendot, Internat. J. Game Theory, 8 (1980) 107–113.MathSciNetCrossRefGoogle Scholar
  48. [48]
    David Wolfe, Snakes in Domineering games, Theoret. Comput. Sci., 119 (1993) 311–321.MathSciNetCrossRefGoogle Scholar
  49. [49]
    Y. Yamasaki, On misère Nim-type games, J. Math. Soc. Japan, 32 (1980) 461–475.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Richard K. Guy
    • 1
  1. 1.University of Calgary CalgaryCalgaryCanada

Personalised recommendations