Skip to main content

On a Conjecture of A. Hartman

  • Chapter
Combinatorics Advances

Part of the book series: Mathematics and Its Applications ((MAIA,volume 329))

Abstract

We denote the complete design D (or the so-called trivial design) by \(S\left( {\left( {_{k - t}^{v - t}} \right);t,k,v} \right).\) A conjecture of Hartman states that one can partition D into two \(S\left( {\left( {_{k - t}^{v - t}} \right)/2;t,k,v} \right)\) designs if and only if \(\left( {_{k - i}^{v - i}} \right)\) is even for i = 0,...t. In this paper, some progress in support of the conjecture is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Ajoodani-Namini, All block designs with \( b = \left( {_k^v} \right)/2\) exist, 1994, submitted.

    Google Scholar 

  2. S. Ajoodani-Namini and G.B. Khosrovshahi, More on halving the complete designs, 1992, Discrete Math., in press.

    Google Scholar 

  3. W.O. Alltop, Extending t-designs, J. Combin. Theory, Ser. A 18 (1975), 177–186.

    Article  MathSciNet  MATH  Google Scholar 

  4. A.Hartman, Halving the complete design, Ann. Discrete Math. 34 (1987), 207–224.

    MathSciNet  Google Scholar 

  5. A.S. Hedayat, The theory of trade-off for t-design, in: Coding Theory and Design Theory, Part II, Design Theory (D.Ray-Chaudhuri, ed.), IMA Vol Math. Appl. 21, Springer-Verlag, 1990, 101–126.

    Google Scholar 

  6. A.S. Hedayat, G.B. Khosrovshahi, and D. Majumdar, A prospect for a general method for constructing t-designs, Discrete Appl. Math. 42 (1993), 31–50.

    Article  MathSciNet  MATH  Google Scholar 

  7. G.B. Khosrovshahi and S. Ajoodani-Namini, An infinite family of 6-designs exists, Sankhyã 54 (1992), 259–264.

    MathSciNet  MATH  Google Scholar 

  8. G.B. Khosrovshahi and S. Ajoodani-Namini, A new basis for trades, SIAM J. Discrete Math. 3 (1990), 364–372.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ajoodani-Namini, S., Khosrovshahi, G.B. (1995). On a Conjecture of A. Hartman. In: Colbourn, C.J., Mahmoodian, E.S. (eds) Combinatorics Advances. Mathematics and Its Applications, vol 329. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3554-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3554-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3556-6

  • Online ISBN: 978-1-4613-3554-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics