Introduction to Electro-Weak Interactions

  • Gino Segrè
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 85)


The 1970–1980 decade will probably be remembered in physics histories as the decade in which gauge theories emerged. In the, first years of this period, the QCD theory of strong interactions(1.1) and the SU2 × U1 theory of electroweak interactions (l·2,1·3,1·4) were extensively studied, and by the end of the decade more speculative gauge theories such as those for grand unification and for dynamical symmetry breaking came under scrutiny.(1·5)


Higgs Boson Gauge Boson Yukawa Coupling Global Symmetry Higgs Doublet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Section 1

  1. 1.
    See e.g. W. Marciano and H. Pagels, Phys. Reports 36 (1978), 137.ADSCrossRefGoogle Scholar
  2. 2.
    E.S. Abers and B. W. Lee, Phys. Reports 9 (1973), 1.ADSCrossRefGoogle Scholar
  3. 3.
    M.A. Beg and A. Sirlin, Ann. Rev. Nucl. Science 24 (1974), 379.ADSCrossRefGoogle Scholar
  4. 4.
    J.C. Taylor, Gauge Theories of Weak Interactions (Cambridge University Press, 1976).Google Scholar
  5. 5.
    For a recent overall review of gauge theories see P. Langacker, “Grand Unified Theories and Proton Decay”, Univ. of Penn preprint 1980, to be published in Phys. Reports.Google Scholar
  6. 6.
    S. Weinberg, Phys. Rev. D8 (1973), 605ADSGoogle Scholar
  7. S. Weinberg Phys. Rev. D8 (1973), 4482.ADSGoogle Scholar
  8. 7.
    J.D. Bjorken and S. D. Dtell, Relativistic Quantum Fields (McGraw Hill, N.Y. 1965).MATHGoogle Scholar

Section 2

  1. 1.
    C. N. Yang and R Mills, Phys. Rev. 96 (1954) 91.MathSciNetADSCrossRefGoogle Scholar
  2. R. Utiyama, Phys. Rev. KH (1956), 1597.CrossRefGoogle Scholar
  3. M. Gel1-Mann and S. L. Glashow, Ann. Phys. (N.Y.) JJ5 (1961), 437.Google Scholar
  4. 2.
    See e.g., R. Gilmore, Lie Groups, Lie Algebras and Some of their Applications (Wiley, N.Y. 1974) for a relevant group theory text.MATHGoogle Scholar

Section 3

  1. 1.
    P. W. Higgs, Phys. Rev. Lett. 12 (1964), 132MathSciNetCrossRefGoogle Scholar
  2. P. W. Higgs Phys. Rev. Lett. 13 (1964), 508MathSciNetADSCrossRefGoogle Scholar
  3. P. W. Higgs Phys. Rev. J45 (1966), 1156MathSciNetADSCrossRefGoogle Scholar
  4. F. Englett and R. Brout, Phys. Rev. Lett. J3 (1964), 321ADSCrossRefGoogle Scholar
  5. G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys. Rev. Lett. 3 (1964), 585.ADSCrossRefGoogle Scholar
  6. 2.
    G.’t Hooft, Nucl. Phys. B33 (1971), 173, ibid. (1971), 1967ADSCrossRefGoogle Scholar
  7. G. ’t, Hooft and M. Veltman, Nucl. Phys. B50 (1972), 318CrossRefGoogle Scholar
  8. B. W. Lee and J. Zinn-Justin, Phys. Rev. D5, 3121, 3137, 3155.Google Scholar
  9. 3.
    For a review see, B. W. Lee, Chiral Dynamics, (Gordon and Breach, N.Y. 1972).Google Scholar
  10. J. Goldstone, Nuovo Cimento 19 (1961), 15MathSciNetGoogle Scholar
  11. 4.
    Y. Nambu, Phys. Rev. Lett. 4 (1960), 380ADSCrossRefGoogle Scholar
  12. Y. Nambu, and G. Jona-Lasinio, Phys. Rev. 122 (1961), 345.ADSCrossRefGoogle Scholar
  13. 5.
    The standard reference is S. Weinberg, Phys. Rev. Lett. 29 (1972), 1658ADSCrossRefGoogle Scholar
  14. P. W. Higgs Phys. Rev. D7 (1973), 2887.Google Scholar
  15. 6.
    For a recent example see e.g. S. Raby, S. Dimopoulos and L. Susskind, Nucl. Phys. B169 (1980), 373.MathSciNetADSCrossRefGoogle Scholar
  16. 7.
    For a lengthier discussion of a similar potential see H. E. Haber, G. L. Kane and T. Sterling, Nucl. Phys. B161(1979), 493.ADSGoogle Scholar

Section 4/Refereces (1.2),(1.3), and (1.4) give the details of this chapter. We have followed closely reference (1.5) here

  1. 1.
    W. J. Marciano, Phys. Rev. D20 (1979), 274ADSGoogle Scholar
  2. M. Veltman, Phys. Lett. 91B (1980), 95.ADSGoogle Scholar
  3. 2.
    D. A. Ross and J. C. Taylor, Nucl. Phys. B5J (1973), 125ADSCrossRefGoogle Scholar
  4. A. Sirlin, Phys. Rev. D22 (1980), 971.ADSGoogle Scholar
  5. 3.
    For a review of neutral current data see J.E. Kim, P. Langacker, M. Levine and H.H. Williams, Rev. Mod. Phys. 53 (1981), 211.ADSCrossRefGoogle Scholar
  6. 4.
    H. Fritzsch and P. Minkowski, Flavordynamics of Quarks and Leptons, Munich Preprint 1980, to be published in Phys. Reports.Google Scholar
  7. 5.
    M. K. Gaillard, Proceedings of 1979 Symposium on Lepton and Photon Interactions (T. W. Kirk, H. D. Abarbanel, eds. Fermilab) 375.Google Scholar

Section 5

  1. 1.
    S. Adler, Phys. Rev. 177 (1969), 2426ADSCrossRefGoogle Scholar
  2. J. S. Bell and R. Jackiw, Nuovo Cimento 5J (1969), 47.ADSGoogle Scholar
  3. 2.
    For a discussion of this point in SU? x U. see J. C. Bouchiat, J. Iiopoulos and P. Meyer, Phys. Lett. 38B, (1972), 519.ADSGoogle Scholar

Section 6

  1. 1.
    We are following the notation of G. Segre and H. A. Weldon, Ann. Phys. (N.Y.) 124, (1980), 37.ADSCrossRefGoogle Scholar
  2. 2.
    S. L. Glashow and S. Weinberg, Phys. Rev. V5 (1973) 1958Google Scholar
  3. E. Paschos, Phys. Rev. D15 (1977), 1966.ADSGoogle Scholar
  4. 3.
    M. Kobayashi and M. Maskawa, Prog. Theor. Phys. 49 (1973), 652.ADSCrossRefGoogle Scholar
  5. 4.
    For a review see J. J. Sakurai, 8th Topical Conference in Particle Physics, ed. V. Z. Peterson and S. Pakvasa (Hawaii, 1980), 375.Google Scholar
  6. 5.
    For a recent paper see e.g., A. Buras, Phys. Rev. Lett. 46 (1981), 1354.ADSCrossRefGoogle Scholar
  7. 6.
    For a classic paper on the subject of box diagrams see J. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B109 (1976) 213ADSCrossRefGoogle Scholar
  8. see also ref. 4.5 and H. Harari, Phys. Reports 42C (1978) 235.ADSCrossRefGoogle Scholar
  9. 7.
    R. Gatto, G. Morchio and F. Strocchi, Phys. Lett. 74B (1979) 265, ibid 83B (1979), 348ADSGoogle Scholar
  10. R. Gatto, Proceedings of Jerusalem Einstein Centennial Symposium (Y. Nefeman ed. Addison Wesley, publ. 1981) 185.Google Scholar
  11. 8.
    The two examples that follow are from reference (6.1).Google Scholar
  12. 9.
    J. D. Bjorken and S. Weinberg, Phys. Rev. Lett. 38 (1977), 622.ADSCrossRefGoogle Scholar
  13. 10.
    For an elementary discussion, see E. Witten, First Workshop on Grand Unification (Math. Sci. Press 1980) and lectures by De Rujula at this school.Google Scholar

Section 7

  1. 1.
    Recent overall views of CP violation are contained in V. L. Fitch, Rev. Mod. Phys. 53 (1981), 367ADSCrossRefGoogle Scholar
  2. J. W. Cronin, Rev. Mod. Phys. 53 (1981), 373.ADSCrossRefGoogle Scholar
  3. A review of the K —K phenomenology is K. Kleinknecht, Ann. Rev. Nucl. Sci. (1976), 1Google Scholar
  4. For a more thorough discussion, see e.g. T. D. Lee and C. S. Wu, Ann. Rev. Nucl. Sci. (1966) 511.Google Scholar
  5. 2.
    Particle Properties Data Booklet 1980, Rev. Mod. Phys. 52, 2 (1980).Google Scholar
  6. 3.
    L. Wolfenstein, Phys. Rev. Lett. J_3 (1964) 562.ADSCrossRefGoogle Scholar
  7. For a more recent variation see e.g. R. N. Mohapatra, J. C. Pati and L. Wolfenstein, Phys. Rev. D1J (1975), 3319.ADSGoogle Scholar
  8. 4.
    For the classic papers on this subject see J. Ellis et al., Ref. (6.6). S. Pakvasa and H Sugawara, Phys. Rev. D14 (1976) 305.ADSGoogle Scholar
  9. L. Maiani, Phys. Lett. 62B (1976) 183.ADSGoogle Scholar
  10. 5.
    F. J. Gilman and M. Wise, Phys. Rev. D20 (1979) 2392ADSGoogle Scholar
  11. B. Guberina and R. D. Peccei, Nucl. Phys. B163 (1980), 289.ADSCrossRefGoogle Scholar
  12. 6.
    R. Bernstein et al., Fermilab Esperiment No. E 617 (1979).Google Scholar
  13. 7.
    T. D. Lee, Phys. Rev. D (1973), 1226; Phys. Reports 96 (1979) 143Google Scholar
  14. 8.
    For an early example see P. Sikivie, Phys. Lett. 65B (1976), 141.ADSGoogle Scholar
  15. For a more recent example see e.g. V. Goffin, G. Segre and H. A. Weldon, Phys. Rev. D21 (1980), 1410.MathSciNetADSGoogle Scholar
  16. 9.
    S. Weinberg, Phys. Rev. Lett. 37 (1976), 67.CrossRefGoogle Scholar
  17. 10.
    For a recent discussion of this point see G. Branco, Phys. Rev. Lett. 44 (1980), 504.ADSCrossRefGoogle Scholar
  18. 11.
    For a discussion of this formalism and in particular of possible searches for CP violation in heavy quark decay, see C. Albright, J. Smith and S. H. Tye, Phys. Rev. D21 (1980), 711ADSGoogle Scholar
  19. K. Shizuya and S. H. Tye, Phys. Rev. D23 (1981), 1613.ADSGoogle Scholar
  20. 12.
    N. Deshpande, Phys. Rev. D23 (1981), 2654ADSGoogle Scholar
  21. A. Sanda, Phys. Rev. D23 (1981) 2647.ADSGoogle Scholar
  22. 13.
    G. F. Donoghue, J. S. Hagelin and B. R. Holstein, “Higgs Exchange Models of CP violation and K 2tr”, U. Mass preprint (1981).Google Scholar
  23. 14.
    N. F. Ramsey, W. Dress, P. Miller, P. Perrin and J. Pendlebury, Phys. Rev. IM5 (1977), 9Google Scholar
  24. I. S. Altarev et al., Phys. Lett. 102B (1981), 13.ADSGoogle Scholar
  25. For a discussion of this section see e.g. S. Coleman, “The Uses of Instantons”, Lecturer at 1977 Ettore Majorana School of Physics, Erice.Google Scholar
  26. 16.
    See e.g. S. L. Adler and R. F. Dashen “Current Algebra and its Application” (W. A. Benjamin, publishers, 1967).Google Scholar
  27. 17.
    V. Baiuni, Phys. Rev. IM9 (1979), 2227ADSGoogle Scholar
  28. R. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Phys. Lett. 88B (1979) 123.ADSGoogle Scholar
  29. 18.
    Attempts to circumvent this difficulty include: H. Georgi, Had. Jour. 1 (1978),155Google Scholar
  30. M. A. B. Beg and H. S. Tsai, Phys. Rev. Lett. (1978), 278Google Scholar
  31. N. Mohapatta and G. N. Senjanovic, Phys. Lett. 79B (1978), 283ADSGoogle Scholar
  32. G. Segrè and H. A. Weldon, Phys. Rev. Lett. 42 (1979); 141CrossRefGoogle Scholar
  33. S. Bàrr and P. Langacker, Phys. Rev. Lett. 2 (1979), 1654.Google Scholar
  34. 19.
    P. Langacker and H. Pagels, Phys. Rev. DJ9 (1979), 2070.ADSGoogle Scholar
  35. 20.
    R. Peccei and H. Quinn, Phys. Rev. Lett. 38 (1977) 1440Google Scholar
  36. R. Peccei and H. Quinn Phys. Rev. D16 (1977), 1791ADSGoogle Scholar
  37. 21.
    For a review see H. Pagels, Phys. Reports JI6, 5 (1975).MathSciNetGoogle Scholar
  38. 22.
    We are following the procedure of W. A. Bardeen and S. H. Tye, Phys. Lett. 74B (1978), 229 Our forms look somewhat different since they have chosen <j> - and to have hypercharge 1/2 and - 1/2, whereas, for pedagogical reasons, both our <j>. and <> have Y = 1/2.ADSGoogle Scholar
  39. 23.
    S. Weinberg, Phys. Rev. Lett. 40, (1978), 223ADSCrossRefGoogle Scholar
  40. F. Wilczek, Phys. Rev. Lett. _40 (1978), 279.ADSCrossRefGoogle Scholar
  41. 24.
    T. Donnelly, S. J. Freedman, R. S. Lytel, R. D. Peccei andM. Schwartz, Phys. Rev. D18 (1978), 1607.ADSGoogle Scholar
  42. Some suggestive positive evidence has however been reported by H. Faissner, Proceedings of Moriond Conference (1981).Google Scholar
  43. 25.
    M. Dine, W. Fischler and M. Srednicki, “A Simple Solution to the Strong CP Problem with a Harmless Axion”, Princeton preprint, 1981Google Scholar
  44. For earlier somewhat similar work see J. E. Kim, Phys. Rev. Lett. 43 (1979), 43ADSCrossRefGoogle Scholar
  45. M. A. Shifman, A. I. Vainshtein and V.I. Zakharov, Nucl. Phys. B166 (1980), 493.MathSciNetADSCrossRefGoogle Scholar
  46. 26.
    M. Wise, H. Georgi and S. Glashow “SU and the Invisible Axion” Harvard preprint HUTP 81/A019.Google Scholar
  47. H. Georgi, L. Hall and M.Wise “Grand Unified Models with an Automatic Peccei-Quinn Symmetry”, Harvard preprint HUTP 81/A031.Google Scholar
  48. 27.
    We are following here the argument as presented in chapter III of J. S. Preskill, “Unified Gauge Theories without Elementary Scalar Fields”, Ph. D. thesis, Harvard, 1980 Part of this thesis is an elaboration of recent work on CP by E. Eichten, K. Lane and J. Preskill, Phys. Rev. Lett. 45 (1980), 225.Google Scholar
  49. 28.
    R. Dashen, Phys. Rev. D3 (1971), 1879.MathSciNetGoogle Scholar
  50. 29.
    See ref. 27; for a recent attempt of a different nature, see A. Masiero, R.N. Mohapatra and R.D. Peccei, “Fermion-Fermion Condensates and CP-Violation”, Max-Planck preprint MPI-PAE 25/81 (1981).Google Scholar
  51. 30.
    For an overall view of particle physics and astrophysics see, e.g. A.D. Dolgen and Ya. B. Zeldovich, Rev. Mod. Phys. 53 (1981),1.ADSCrossRefGoogle Scholar

Section 8

  1. 1.
    See e.g. M. Veltman, Proceedings of the 1979 International Symposium on Lepton and Photon Interactions (T. W. Kirk, H. D. Abarbanel eds, Fermilab) p. 523.Google Scholar
  2. 2.
    For recent examples see e.g. V. Barger, E. Ma and K. Whisnaut Phys. Rev. Lett. 46 (1981), 1501ADSCrossRefGoogle Scholar
  3. E. H. de Groot, G. J. Gounaris and D. Schildknecht, Phys. Lett. 90B (1980), 427ADSGoogle Scholar
  4. T. G. Rizzo and G. Senjanovic, Brookhaven Lab Report 29397 (1981)Google Scholar
  5. R. N. Mohapatra and G. Senjanovic, Phys. Rev. D23 (1981), 105.Google Scholar
  6. 3.
    L. Maiani, G. Parisi and R. Petronzio, Nucl. Phys. B136 (1978), 115ADSCrossRefGoogle Scholar
  7. D. Politzer and S. Wolfram, Phys. Lett. 82B (1979), 242; 83B (1979), 421(E).ADSGoogle Scholar
  8. 4.
    See ref. 7.30.Google Scholar
  9. 5.
    For a recent review of electroweak interactions in which several interesting suggestions are made see J. D. Bjorken “Electro Weak Interactions” Fermilab preprint, Conf. 80/86 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Gino Segrè
    • 1
  1. 1.Department of PhysicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations