Skip to main content

Functional Methods in Quantum Field Theory

  • Chapter
  • 157 Accesses

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 85))

Abstract

In 1933 Dirac pointed out that it would be desirable to have a formulation of quantum mechanics in close correspondence to the Lagrangian method in classical mechanics, rather than to the more conventional Hamiltonian framework1). The Lagrangian method is based upon an action, defined as the time integral of the Lagrangian, and the principle of least action expresses the equations of motion in terms of a variational principle. The action is a relativistic invariant, and therefore the obvious advantage of this approach is that relativistic invariance is manifest at all stages. Feynman, in his pioneering work, fully developed this line of thought, and applied his methods to a large variety of problems 2,3). His work led to the notion of an integral over all paths, which is an integration in the space of functionals. Such integrations had actually been studied in the mathematical literature (for a review, see (4)).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.A.M. Dirac, Phys. Z. der Sowjetunion 3, reprinted in “Quantum Electrodynamics”, ed. J. Schwinger (Dover 1958); “The Principles of Quantum Mechanics” (The Clarendon Press, 1958).

    Google Scholar 

  2. R.P. Feynman, Rev. Mod. Phys. 20, 267 (1948).

    Article  MathSciNet  ADS  Google Scholar 

  3. R.P. Feynman and A.R. Hibbs, “Quantum Mechanics and Path Integrals” (Mc Graw-Hill 1965).

    Google Scholar 

  4. J.M. Gel’fand and A.M. Yaglom, J. Math. Phys. 1, 48 (1960).

    Article  ADS  MATH  Google Scholar 

  5. For a review, see M. Veltman, proc. Int. Symp. on Electron and Photon Interactions at High Energies, Bonn (1973) (North-Holland).

    Google Scholar 

  6. E.S. Abers and B.W. Lee, Phys. Rep. 9, 1 (1973).

    Google Scholar 

  7. M. Veltman, lectures at the Basko Polje Summer School, (1974).

    Google Scholar 

  8. S. Coleman, proc. of the 1975 International School of Subnuclear Physics “Ettore Majorana” (Acad. Press, 1975).

    Google Scholar 

  9. L.D. Faddeev, in Methods in Field Theory, eds. R. Balian and J. Zinn-Justin (North-Holland, 1976).

    Google Scholar 

  10. B.W. Lee, in Methods in Field Theory, eds. R. Balian and J. Zinn-Justin (North-Holland, 1976).

    Google Scholar 

  11. J.C. Taylor, Gauge Theories of Weak Interactions (Cambridge Univ. Press, 1976).

    Google Scholar 

  12. V.N. Popov, Functional Integrals in Quantum Field Theory and Statistical Physics (in Russian), (Atomizdat, 1976); CERN preprint TH.2424, 1977.

    Google Scholar 

  13. C. De Witt-Morette, A. Maheswari and B. Nelson, Phys. Rep. 50, 255 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  14. L.D. Faddeev and A.A. Slavnov, Gauge fields: Introduction to Quantum Theory (Benjamin Cummings, 1980).

    MATH  Google Scholar 

  15. C. Itzykson and J.B. Zuber, Quantum Field Theory (Mc Graw-Hill, 1980).

    Google Scholar 

  16. M.S. Marinov, Phys, Rep. 60, 1 (1980).

    MathSciNet  Google Scholar 

  17. P. Ramond, Field Theory; a modern primer (Benjamin Cummings, 1981).

    Google Scholar 

  18. See for instance, H. Goldstein, Classical Mechanics (Addison-Wesley, 1950).

    Google Scholar 

  19. C.W. Bernard, Phys. Rev. D9, 3312 (1974).

    ADS  Google Scholar 

  20. R.P. Feynman, Phys. Rev. 84, 108, (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. The effective action for the velocity-dependent potential was first obtained by T.D. Lee and C.N. Yang, Phys. Rev. 128, 885 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. J. Schwinger, Proc. Nat. Acad. Sci. 44, 956 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. K. Symanzik, proc. Int. School “Enrico Fermi”, ed. R. Jost (Acad. Press, 1969);

    Google Scholar 

  24. K. Osterwalder and R. Schrader, Comm. Math. Phys. 31, 83 (1973).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. R.P. Feynman, Phys. Rev. 91, 1291 (1953); Statistical Mechanics: A Set of Lectures (Benjamin, 1972).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. See for instance, A. Fetter and J. Walecka, Quantum Theory of Many-Particle Systems (Mc Graw-Hill, 1965).

    Google Scholar 

  27. G. Jona-Lasinio, Nuovo Cim. 34, 1790 (1964).

    Article  Google Scholar 

  28. J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127, 965 (1962).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. S. Coleman and E. Weinberg, Phys. Rev. D7, 1888 (1973).

    ADS  Google Scholar 

  30. R. Jackiw, Phys. Rev. D9, 1686 (1974).

    ADS  Google Scholar 

  31. G. ’t Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972);

    Article  ADS  Google Scholar 

  32. C.G. Bollini and J.J. Giambiagi, Phys. Lett. 40B, 566 (1972)

    ADS  Google Scholar 

  33. J.F. Ashmore, Lett. Nuovo Cim. 4, 289 (1972).

    Article  Google Scholar 

  34. G.M. Cicuta and E. Montaldi, Lett. Nuovo Cim. 4, 329 (1972).

    Article  Google Scholar 

  35. S. Weinberg, Phys. Rev. Lett. 36, 294 (1976)

    Article  ADS  Google Scholar 

  36. A.D. Linde, Zh. Eksp. Teor. Fiz. Pis. Red. 23, 73 (1976) (JEPT Lett. 23, 64 (1976)).

    ADS  Google Scholar 

  37. L. Dolan and R. Jackiw, Phys. Rev. D9, 3320 (1974).

    ADS  Google Scholar 

  38. S. Weinberg, Phys. Rev. D9, 3357 (1974).

    ADS  Google Scholar 

  39. D. Kirzhnits and A. Linde, Phys. Lett. 42B, 471 (1972).

    ADS  Google Scholar 

  40. A.D. Linde, Rep. Prog. Phys. 42, 389, (1979).

    Article  ADS  Google Scholar 

  41. G. ‘t Hooft, this volume.

    Google Scholar 

  42. J. Iliopoulos and N. Papanicolaou, Nucl. Phys. Bill, 209 (1976).

    Google Scholar 

  43. F.A. Berezin, The Method of Second Quantization (Acad. Press, (1966).

    MATH  Google Scholar 

  44. B. de Wit, Phys. Rev. D12, 1628 (1975).

    ADS  Google Scholar 

  45. R. Arnowitt, P. Nath and B. Zumino, Phys. Lett. 56B, 81 (1975).

    MathSciNet  ADS  Google Scholar 

  46. A. De Rujula, this volume.

    Google Scholar 

  47. E.C.G. Stueckelberg, Helv. Phys. Acta 11, 225 (1938).

    MATH  Google Scholar 

  48. P. van Nieuwenhuizen, Phys. Rep. 68, 189 (1981).

    Google Scholar 

  49. L.D. Faddeev and V.N. Popov, Phys. Lett. 25B, 29 (1976).

    ADS  Google Scholar 

  50. N.K. Nielsen, Nucl. Phys. B140, 499 (1978)

    Article  ADS  Google Scholar 

  51. R.E. Kallosh, Nucl. Phys. B141, 141 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  52. R.P. Feynman, In Relativistic Theories of Gravitation, (Pergamon Press 1964); Acta Phys. Polonica 24, 697 (1963).

    Google Scholar 

  53. B.S. De Witt. Phvs. Rev. Lett. 12, 742 (1964); Phys. Rev. 162, 1195, 1239 (1967).

    Article  ADS  Google Scholar 

  54. M. Veltman, Nucl. Phys. B21, 288 (1970)

    ADS  Google Scholar 

  55. E.S. Fradkin and J.V. Tyutin, Phys. Rev. D2, 2841 (1970)

    MathSciNet  ADS  Google Scholar 

  56. G.’t Hooft, Nucl. Phys. B33, 173 (1971);

    Article  ADS  Google Scholar 

  57. G.‘t Hooft and M. Veltman, Nucl. Phys. B50, 318 (1972);

    Article  Google Scholar 

  58. B.W. Lee and J. Zinn-Justin, Phys. Rev. D7, 1049 (1973).

    ADS  Google Scholar 

  59. C. Fronsdal, Phys. Rev. D18, 3624 (1978).

    ADS  Google Scholar 

  60. T.L. Curtright, Phys. Lett. 85B, 219 (1979).

    ADS  Google Scholar 

  61. B. de Wit and D.Z. Freedman, Phys. Rev. D21, 358 (1980).

    ADS  Google Scholar 

  62. J. Fang and C. Fronsdal, Phys. Rev. D18, 3630 (1978).

    ADS  Google Scholar 

  63. C. Aragone and S. Deser, Phys. Rev. D21, 352 (1980).

    MathSciNet  ADS  Google Scholar 

  64. M.A. Namazie and D. Storey, Nucl. Phys. B157, 170 (1979); P.K. Townsend, Phys. Lett. 88B, 97 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  65. W. Siegel, Phys. Lett. 93B, 170 (1980).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

de Wit, B. (1982). Functional Methods in Quantum Field Theory. In: Lévy, M., Basdevant, JL., Speiser, D., Weyers, J., Jacob, M., Gastmans, R. (eds) Fundamental Interactions. NATO Advanced Study Institutes Series, vol 85. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3551-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3551-1_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3553-5

  • Online ISBN: 978-1-4613-3551-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics