Advertisement

Flux Pinning in High-Current-Carrying Superconductors

  • E. J. Kramer
Part of the Advances in Cryogenic Engineering Materials book series (ACRE, volume 28)

Abstract

For most magnetic applications of superconducting wire materials (e.g., superconducting power machines, tokamak coils, etc.), it is desirable for these wires to carry high current densities in high magnetic fields, H. It is well known, however, that an upper limit, the critical current density, Jc, exists, which depends strongly on the metallurgical microstructure of the wire as well as on H and temperature. The basic mechanism underlying the microstructure sensitivity of Jc is known in general terms to be the pinning of the flux line lattice, FLL, of the mixed state by defects in the crystal lattice of the superconductor.1–5 There continues to be considerable controversy, however, about two questions: 1) What is the nature of the elementary interaction pinning force, fp, between the FLL and a single lattice defect? and 2) How should these elementary interactions be summed to find the volume pinning force, Fp, which is the fundamental quantity that determines Jc since Fp = Jc × B? In what follows, recent evidence bearing on these questions is reviewed, with special attention given to applications of these ideas to high-field high-current superconductors, such as niobium-titanium alloys and the A15 compounds.

Keywords

Flux Line Elementary Interaction Flux Pinning Void Density International Discus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Livingston and H. Schadler, Prog. Mater. Sci. 12: 183 (1964).Google Scholar
  2. 2.
    A. M. Campbell and J. E. Evetts, Adv. Phys. 21: 199 (1972).CrossRefGoogle Scholar
  3. 3.
    E. J. Kramer, J. Electron. Mater. 4: 839 (1975).CrossRefGoogle Scholar
  4. 4.
    H. Ullmaier, “Springer Tracts in Modern Physics,” 76 (1975).Google Scholar
  5. 5.
    E. J. Kramer, J. Nucl. Mater. 72: 5 (1978).CrossRefGoogle Scholar
  6. 6.
    C. C. Koch, A. Das Gupta, D. M. Kroeger, and J. O. Scarborough, Philos. Mag. B40: 361 (1979).CrossRefGoogle Scholar
  7. 7.
    E. J. Kramer, J. Appl. Phys. 49: 742 (1978).CrossRefGoogle Scholar
  8. 8.
    A. Das Gupta, C. C. Koch, D. M. Kroeger, and Y. T. Chou, Philos. Mag. B38: 369 (1978).Google Scholar
  9. 9.
    A. Das Gupta and E. J. Kramer, Philos. Mag. 26: 779 (1972).CrossRefGoogle Scholar
  10. 10.
    G. Antesberger and H. A. Ullmaier, Philos. Mag. 29: 1101 (1974).CrossRefGoogle Scholar
  11. 11.
    J. D. Livingston, Phys. Status Solidi 44: 295 (1977).CrossRefGoogle Scholar
  12. 12.
    R. M. Scanlan, W. A. Fietz, and E. F. Koch, J. Appl. Phys. 46: 2244 (1975).CrossRefGoogle Scholar
  13. 13.
    A. W. West and R. D. Rawlings, J. Mater. Sci. 12: 1862 (1977).CrossRefGoogle Scholar
  14. 14.
    V. Graeger, Ph.D. dissertation, Universität Göttingen, FRG (1980).Google Scholar
  15. 15.
    E. J. Kramer, Philos. Mag. 33: 331 (1976).CrossRefGoogle Scholar
  16. 16.
    D. Dew-Hughes, Philos. Mag. 30: 293 (1974).CrossRefGoogle Scholar
  17. 17.
    R. Labusch, Cryst. Lattice Defects 1: 1 (1969).Google Scholar
  18. 18.
    A. M. Campbell, Philos. Mag. B37: 149 (1978).Google Scholar
  19. 19.
    A. I. Larkin and Yu. N. Ovchinnikov, J. Low Temp. Phys. 34: 409 (1979).Google Scholar
  20. 20.
    E. H. Brandt, Phys. Lett. 77A: 484 (1980).Google Scholar
  21. 21.
    T. Matsushita and K. Yamafuji, J. Phys. Soc. Jpn. 47: 1427 (1980).Google Scholar
  22. 22.
    E. J. Kramer, J. Appl. Phys. 49: 742 (1978).CrossRefGoogle Scholar
  23. 23.
    E. J. Kramer and H. C. Freyhardt, J. Appl. Phys. 51: 4930 (1980).CrossRefGoogle Scholar
  24. 24.
    C. S. Pande and M. Suenaga, Appl. Phys. Lett. 29: 443 (1976).CrossRefGoogle Scholar
  25. 25.
    M. E. Lunnon and E. J. Kramer, unpublished.Google Scholar
  26. 26.
    M. E. Lunnon, D. A. Thomas, and E. J. Kramer, Philos. Mag., in press.Google Scholar
  27. 27.
    E. J. Kramer and G. S. Knapp, J. Appl. Phys. 46: 4595 (1975).CrossRefGoogle Scholar
  28. 28.
    E. Seidl and H. W. Weber, in: “Anisotropy Effects in Superconductors,” H. W. Weber, ed., Plenum Press, New York (1977), p. 57.Google Scholar
  29. 29.
    G. Zerweck, J. Low Temp. Phys. 42: 1 (1981).CrossRefGoogle Scholar
  30. 30.
    W. Yetter, Ph.D. thesis, Cornell University, Ithaca, New York (1980).Google Scholar
  31. 31.
    R. A. Brown, J. Phys. F.-Met. Phys. 7: 1477 (1977).CrossRefGoogle Scholar
  32. 32.
    A. V. Narlikhar and D. Dew-Hughes, Phys. Status Solidi 6: 383 (1964).CrossRefGoogle Scholar
  33. 33.
    D. A. Thomas, Ph.D. thesis, Cornell University, Ithaca, New York (1982).Google Scholar
  34. 34.
    K. Togano and K. Tachikawa, J. Appl. Phys. 50: 3495 (1979).CrossRefGoogle Scholar
  35. 35.
    W. A. Fietz and W. W. Webb, Phys. Rev. 178; 657 (1969).CrossRefGoogle Scholar
  36. 36.
    E. J. Kramer, J. Appl. Phys. 44: 1360 (1973).CrossRefGoogle Scholar
  37. 37.
    E. J. Kramer, in: “Proceedings of the International Discussion Meeting on Flux Pinning on Superconductors,” P. Haasen and H. C. Freyhardt, eds., Akademie der Wissenshaften, Göttingen, FRG (1975), p. 240.Google Scholar
  38. 38.
    M. Steingart, A. Putz, and E. J. Kramer, J. Appl. Phys. 44: 5580 (1973).CrossRefGoogle Scholar
  39. 39.
    R. W. Rollins, H. Kupfer, and W. Gey, J. Appl. Phys. 45: 5392 (1979).CrossRefGoogle Scholar
  40. 40.
    B. D. Lauterwasser and E. J. Kramer, Phys. Lett. 53A: 410 (1981).Google Scholar
  41. 41.
    A. M. Campbell, in: “Proceedings of the International Discussion Meeting on Flux Pinning on Superconductors,” P. Haasen and H. C. Freyhardt, eds., Akademie der Wissenshaften, Göttingen, FRG (1975), p. 47.Google Scholar
  42. 42.
    T. Matsushita, T. Tanaka, and K. Yamafuji, J. Phys. Soc. Jpn. 46: 756 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • E. J. Kramer
    • 1
  1. 1.Department of Materials Science and Engineering and the Materials Science CenterCornell UniversityIthacaUSA

Personalised recommendations