Advertisement

The University College Computer Package for the Calculation of Atomic data

Aspects of Development and Application
  • H. Nussbaumer
  • P. J. Storey

Abstract

In 1955 M. J. Seaton(1) indulged in a short flirtation with Fe II. He did not go further than was considered appropriate at the time, but just offered an estimate of the upper limit for a crucial cross section. The title of that paper is “The kinetic temperature of the interstellar gas in regions of neutral hydrogen,” and the abstract of that paper begins:

The paper is mainly concerned with the cooling resulting from excitation by electron impact of low-lying levels in C+, Si+, and Fe+. The collision cross sections have been calculated by quantal methods for C+ and have been estimated for Si+ and Fe+; the precision of the results obtained should be adequate for the present problem. The chemical composition of the gas is assumed to be similar to typical stellar compositions; this assumption is shown to be reasonable but it is not established with certainty.

Keywords

Oscillator Strength Solar Corona Planetary Nebula Photoionization Cross Section Dielectronic Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.J. Seaton, The kinetic temperature of the interstellar gas in regions of neutral hydrogen, Ann. Astrophys. 18, 188–205 (1955).ADSGoogle Scholar
  2. 2.
    H. Nussbaumer and P. J. Storey, Atomic data for Fe II, Astron. Astrophys. 89, 308–313 (1980).ADSGoogle Scholar
  3. 3.
    H. Nussbaumer, M. Pettini, and P. J. Storey, Sextet transitions in Fe II, Astron. Astrophys. 102, 351–358 (1981).ADSGoogle Scholar
  4. 4.
    M. J. Seaton, The Hartree-Fock equations for continuous states with applications to electron excitation of the ground configuration terms of O I, Philos. Trans. R. Soc. Lond. Ser. A 245, 469–499 (1953).ADSzbMATHCrossRefGoogle Scholar
  5. 5.
    M. J. Seaton, Electron excitation of forbidden lines occurring in gaseous nebulae, Proc. Roy. Soc. A 218, 400–416 (1953).ADSzbMATHCrossRefGoogle Scholar
  6. 6.
    M. H. Hebb and D. H. Menzel, Collisional excitation of nebulium, Astrophys. J. 92, 408–423 (1940).ADSCrossRefGoogle Scholar
  7. 7.
    T. Yamanouchi, T. Inui, and A. Amemiya, Excitation of metastable states of oxygen atom by electron impact, Proc. Phys. Math. Soc. Jpn. Ser. 3, 22, 848–854 (1940).Google Scholar
  8. 8.
    L. A. Aller, Target areas for the collisional excitation of nebular lines, Astrophys. J. 111, 609–610 (1950).ADSCrossRefGoogle Scholar
  9. 9.
    D. R. Bates, A. Fundaminsky, J. W. Leech, and H. S. W. Massey, Excitation and ionization of atoms by electron impact—the Born and Oppenheimer approximations, Philos. Trans. R. Soc. Lond. Ser. A 243, 93–141 (1950).ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    E. U. Condon and G. H. Shortley, Theory of Atomic Spectra, Cambridge University Press, London, 1935.Google Scholar
  11. 11.
    I. S. Bowen, The origin of the nebular lines and the structure of planetary nebulae, Astrophys. J. 67, 1–15 (1928).ADSCrossRefGoogle Scholar
  12. 12.
    B. Edlen, An attempt to identify the emission lines in the spectrum of the solar corona, Ark. Mat. Astron. Fys. 28B, 1–4 (1941).Google Scholar
  13. 13.
    B. Edlén, Die Deutung der Emissionslinien im Spektrum der Sonnenkorona, Z. Astrophys. 22, 30–64 (1942).ADSGoogle Scholar
  14. 14.
    W. Grotrian, Zur Frage der Deutung der Linien im Spektrum der Sonnenkorona, Naturwissenschaften 27, 214 (1939).ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    I. S. Bowen and B. Edlén, Forbidden lines of Fe vn in the spectrum of Nova Pictoris (1925), Nature 143, 373 (1939).ADSCrossRefGoogle Scholar
  16. 16.
    P. Swings, Finale in Mem. Soc. R. Sci. Liege Ser. 5 17, 407 (1969).Google Scholar
  17. 17.
    H. Van Regemorter, Rate of collisional excitation in stellar atmospheres, Astrophys. J. 136, 906–915 (1962).ADSCrossRefGoogle Scholar
  18. 18.
    S. R. Pottasch, On the interpretation of the solar ultraviolet emission line spectrum, Space Sei. Rev. 3, 816–855 (1964).ADSGoogle Scholar
  19. 19.
    W. M. Burton, A. Ridgeley, and R. Wilson, The ultraviolet emission spectrum of the solar chromosphere and corona, Mon. Not. R. Astron. Soc. 135, 207–223 (1967).ADSGoogle Scholar
  20. 20.
    A. H. Gabriel, B. C. Fawcett, C. Jordan, Classification of iron lines in the spectrum of the sun and zeta in the range 167 to 220 Å, Nature 206, 390–393 (1965).ADSCrossRefGoogle Scholar
  21. 21.
    A. H. Gabriel and B. C. Fawcett, Identification of the solar spectrum in the region 60 to 170 Å, Nature 206, 808–809 (1965).ADSCrossRefGoogle Scholar
  22. 22.
    C. E. Moore, An Ultraviolet Multiplet Table, Circular No. 488, National Bureau of Standards, Washington, D.C., 1950.Google Scholar
  23. 23.
    D. E. Osterbrock, Expected ultraviolet emission spectrum of gaseous nebula, Planet. Space Sci. 11, 621–632 (1963).ADSCrossRefGoogle Scholar
  24. 24.
    M. J. Seaton, Thermal inelastic collision processes, Rev. Mod. Phys. 30, 979–991 (1958).ADSCrossRefGoogle Scholar
  25. 25.
    M. J. Seaton, The Theory of Excitation and Ionization by Electron Impact, in Atomic and Molecular Processes, D. R. Bates, Ed., Academic Press, New York, pp. 374–420.Google Scholar
  26. 26.
    M. Schmidt, Large redshifts of five quasistellar sources, Astrophys. J. 141, 1295–1300 (1965).ADSCrossRefGoogle Scholar
  27. 27.
    G. Racah, Theory of complex spectra, Phys. Rev. 62, 438–462 (1942).ADSCrossRefGoogle Scholar
  28. 28.
    E. Godfredsen, Atomic term energies for atoms and ions with 11 to 28 electrons, Astrophys. J. 145, 308–332 (1966).ADSCrossRefGoogle Scholar
  29. 29.
    W. Eissner and H. Nussbaumer, A programme for calculating atomic structures, J. Phys. B 2, 1028–1043 (1969).ADSCrossRefGoogle Scholar
  30. 30.
    W. Eissner, H. Nussbaumer H. E. Saraph, and M. J. Seaton, Resonances in cross sections for excitation of forbidden lines in O2 +, J. Phys. B 2, 341–355 (1969).ADSCrossRefGoogle Scholar
  31. 31.
    D. R. Flower and M. J. Seaton, Forbidden line radiation from gaseous nebulae, M km. Soc. R. Sci. Liège Ser. 5 17, 251–268 (1969).Google Scholar
  32. 32.
    H. Nussbaumer, Oscillator strengths in complex atoms: applications to N iv, Mon. Not. R. Astron. Soc. 145, 141–150 (1969).ADSGoogle Scholar
  33. 33.
    H. Nussbaumer and D. E. Osterbrock, On the forbidden emission lines of iron in Seyfert galaxies, Astrophys. J. 161, 811–820 (1970).ADSCrossRefGoogle Scholar
  34. 34.
    W. Eissner, Computer Methods and Packages in Electron-Atom Collisions, in Physics of Electronic and Atomic Collisions, North-Holland, Amsterdam, 1972, pp. 460–478.Google Scholar
  35. 35.
    W. Eissner and M. J. Seaton, Computer programs for the calculation of electron-atom collision cross sections, J. Phys. B 5, 2187–2198 (1972).ADSCrossRefGoogle Scholar
  36. 36.
    H. E. Saraph, Collision strengths from reactance matrices, Comput. Phys. Commun. 1, 232–240 (1970).ADSCrossRefGoogle Scholar
  37. 37.
    M. Jones, Relativistic corrections to atomic energy levels, J. Phys. B 3, 1571–1592 (1970).ADSCrossRefGoogle Scholar
  38. 38.
    W. Eissner, M. Jones, and H. Nussbaumer, Techniques for the calculation of atomic structures and radiative data including relativistic corrections, Comput. Phys. Commun. 8, 270–306 (1974).ADSCrossRefGoogle Scholar
  39. 39.
    H. E. Saraph, Fine structure cross sections from reactance matrices, Comput. Phys. Commun. 3, 256–268 (1972).ADSCrossRefGoogle Scholar
  40. 40.
    H. Nussbaumer, Forbidden transitions in the C I sequence, Astrophys. J. 166, 411–422 (1971).ADSCrossRefGoogle Scholar
  41. 41.
    R. H. Garstang, Forbidden Transitions, in Atomic and Molecular Processes, D. R. Bates, Ed., Academic Press, New York, 1962, pp. 1–46.Google Scholar
  42. 42.
    R. H. Garstang, Theoretical and experimental forbidden atomic transition probabilities, Mém. Soc. R Sci. Liège Ser. 5 17, 35–44 (1969).Google Scholar
  43. 43.
    R. H. Garstang, Discussion on Transition Probabilities for Forbidden Lines, IAU Symposium 34 on Planetary Nebulae, D. E. Osterbrock and C. R. O’Dell, Eds., Reidel, Dordrecht, 1968, p. 151.(1959).Google Scholar
  44. 44.
    D. Layzer, On a screening theory of atomic spectra, Ann. Phys. (N.Y.) 8, 271–296 (1959).MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. 45.
    H. Nussbaumer, Improved bound wave functions for complex atoms, J. Phys. B 5, 1837–1843 (1972).ADSCrossRefGoogle Scholar
  46. 46.
    H. Nussbaumer and P. J. Storey, The C III transition probabilities, Astron. Astrophys. 64, 139–144 (1978).ADSGoogle Scholar
  47. 47.
    A. W. Weiss, Superposition of configurations and atomic oscillator strengths—carbon I and II, Phys. Rev. 162, 71–80 (1967).ADSCrossRefGoogle Scholar
  48. 48.
    C. Edmiston and M. Krauss, Pseudonatural orbitals as a basis for the superposition of configurations. I. He2 +, J. Chem. Phys. 45, 1833–1839 (1966).ADSCrossRefGoogle Scholar
  49. 49.
    A. P. Jucys, On the Hartree-Fock method in multiconfiguration approximation, Adv. Chem. Phys. 14, 191–206 (1969).CrossRefGoogle Scholar
  50. 50.
    D. E. Osterbrock, Excitation of semiforbidden 2s 2 l S-2s2p 3 lines observed in quasars and nebulae, J. Phys. B 3, 149–160 (1970).ADSCrossRefGoogle Scholar
  51. 51.
    D. E. Osterbrock, Excitation of C III] λ1909 and other semiforbidden lines in QSO’s and nebulae, Astrophys. J. 160, 25–30 (1970).ADSCrossRefGoogle Scholar
  52. 52.
    D. E. Osterbrock, Forbidden emission lines in galaxies and quasars, Mém. Soc. R. Sci. Liège Ser. 5, 17, 391–403 (1969).Google Scholar
  53. 53.
    I. L. Beigman and L. A. Vainshtein, Effective cross sections for the exchange excitation of atoms and ions by electron impact, Sov. Phys. JETP 25, 119–123 (1967).ADSGoogle Scholar
  54. 54.
    D. R. Flower, Collision strengths for elelctron excitation of highly ionized complex atoms, J. Phys. B 4, 697–705 (1971).ADSCrossRefGoogle Scholar
  55. 55.
    D. R. Flower and G. Pineau des Forets, Excitation of the Fe xm spectrum in the solar corona, Astron. Astrophys. 24, 181–192 (1973).ADSGoogle Scholar
  56. 56.
    M. Loulergue and H. Nussbaumer, Fe xvn emission from the solar corona, Astron. Astrophys. 24, 209–213 (1973).ADSGoogle Scholar
  57. 57.
    M. Loulergue and H. Nussbaumer, A study of Fe xvn and Ni xix coronal lines, Astron. Astrophys. 45, 125–134 (1975).ADSGoogle Scholar
  58. 58.
    H. Mason, The excitation of several iron and calcium lines in the visible spectrum of the solar corona, Mon. Not. R. Astron. Soc. 170, 651–689 (1975).ADSGoogle Scholar
  59. 59.
    K. P. Dere, H. E. Mason, K. G. Widing, and A. K. Bhatia, XUV electron density diagnostics for solar flares, Astrophys. J. Suppl. Ser. 40, 341–364 (1979).ADSCrossRefGoogle Scholar
  60. 60.
    H. E. Mason, G. A. Doschek, U. Feldman, and A. K. Bhatia, Fe XXI as an electron density diagnostic in solar flares, Astron. Astrophys. 73, 74–81 (1979).ADSGoogle Scholar
  61. 61.
    W. Eissner and M. J. Seaton, Computer programs for the calcualtion of electron-atom collision cross sections I: General formulation, J. Phys. B 5, 2187–2198 (1972).ADSCrossRefGoogle Scholar
  62. 62.
    M. J. Seaton and P. M. H. Wilson, A frozen cores approximation for atomic structure calculations, Phys. B 5, L1-L3 (1972).ADSCrossRefGoogle Scholar
  63. 63.
    M. A. Crees, M. J. Seaton, and P. M. H. Wilson, IMPACT, a program for the solution of the coupled integro-differential equations of electron-atom collision theory, Comput. Phys. Commun. 15, 23–83 (1978).ADSCrossRefGoogle Scholar
  64. 64.
    A. R. G. Jackson, Excitation of C II] λ2326 O m] XI664, and other semiforbidden emission lines in quasars, Mon. Not. R. Astron. Soc. 165, 53–60 (1973).ADSGoogle Scholar
  65. 65.
    C. Jordan, “The Relative Intensities of Lines from Be I-like Ions in the Solar Spectrum,” Highlights in Astronomy, C. de Jager, Ed., Reidel, Dordrecht, 1971, pp. 519–526.Google Scholar
  66. 66.
    R. H. Munro, A. K. Dupree, and G. L. Withbroe, Electron densities derived from line itensity ratios: beryllium isoelectronic sequence, Solar Phys. 19, 347–355 (1971).ADSCrossRefGoogle Scholar
  67. 67.
    M. Loulergue and H. Nussbaumer, The chromosphere-corona transition region as seen in C III, Astron. Astrophys. 34, 225–233 (1974).ADSGoogle Scholar
  68. 68.
    M. Loulergue and H. Nussbaumer, The C III problem, Astron. Astrophys. 51, 163–170 (1976).ADSGoogle Scholar
  69. 69.
    C. Jordan, The measurement of electron densities from beryllium-like ion line ratios, Astron. Astrophys. 34, 69–73 (1974).ADSGoogle Scholar
  70. 70.
    A. K. Dupree, P. V. Foukal, and C. Jordan, Plasma diagnostic techniques in the ultraviolet: the C III density-sensitive lines in the sun, Astrophys. J. 209, 621–632 (1976).ADSCrossRefGoogle Scholar
  71. 71.
    D. R. Flower and J. M. Launay, Electron collisional excitation of C+2, Astron. Astrophys. 29, 321–326 (1973).ADSGoogle Scholar
  72. 72.
    M. D. Hershkowitz and M. J. Seaton, The calculation of resonances in electron-ion scattering using the distorted wave approximation, J. Phys. B 6, 1176–1187 (1973).ADSCrossRefGoogle Scholar
  73. 73.
    H. P. Muhlethaler, and H. Nussbaumer, TTransition probabilities within 2s 2-2s2p-2p 2 in the Be i sequence, Astron. Astrophys. 48, 109–114 (1976).ADSGoogle Scholar
  74. 74.
    P. G. Burke and W. D. Robb, “The R-Matrix Theory of Atomic Processes,” in Advances in Atomic and Molecular Physics, Vol. 11, D. R. Bates and B. Bederson, Eds., Academic, New York, 1975, pp. 143–214.Google Scholar
  75. 75.
    K. A. Berrington, P. G. Burke, P. L. Dufton, and A. E. Kingston, Electron collisional excitation of C hi and o v, J. Phys. B 10, 1465–1475 (1977).ADSCrossRefGoogle Scholar
  76. 76.
    P. L. Dufton, K. A. Berrington, P. G. Burke, and A. E. Kingston, The interpretation of C III and O v emission line ratios in the sun, Astron. Astrophys. 62, 111–120 (1978).ADSGoogle Scholar
  77. 77.
    A. Meyer and H. Nussbaumer, Formation of emission lines in a shock heated solar atmosphere, Astron. Astrophys. 57, 431–436 (1977).ADSGoogle Scholar
  78. 78.
    J. C. Raymond and A. K. Dupree, C III density diagnostics in nonequilibrium plasmas, Astrophys. J. 222, 379–383 (1978).ADSCrossRefGoogle Scholar
  79. 79.
    R. H. Garstang and L. J. Shamey, Intercombination line oscillator strengths in the helium and beryllium isoelectronic sequences, Astrophys. J. 148, 665–666 (1967).ADSCrossRefGoogle Scholar
  80. 80.
    A. Burgess and M. J. Seaton, The ionization equilibrium for iron in the solar corona, Mon. Not. R. Astron. Soc. 127, 355–358 (1964).ADSGoogle Scholar
  81. 81.
    P. J. Storey, Dielectronic recombination at nebular temperatures, Mon. Not. R. Astron. Soc. 195, 27P-31P (1981).ADSGoogle Scholar
  82. 82.
    J. P. Harrington, J. H. Lutz, M. J. Seaton, and D. J. Stickland, Ultraviolet spectra of planetary nebulae I: The abundance of carbon in IC 418, Mon. Not. R. Astron. Soc. 191, 13–22 (1980).ADSGoogle Scholar
  83. 83.
    S. Torres-Peimbert and M. Peimbert, Photoelectric photometry and physical conditions of planetary nebulae, Rev. Mex. Astron. Astrofis. 2, 181–207 (1977).ADSGoogle Scholar
  84. 84.
    D. J. Stickland, C. J. Penn, M. J. Seaton, M. A. J. Snijders, P. J. Storey, and C. R. Kitchin, Ultraviolet Observations of Nova Cygni 1978, The First Year of IUE, A. J. Willis, Ed., University College London, 1979, pp. 63–77.Google Scholar
  85. 85.
    J. P. Harrington, J. H. Lutz, and M. J. Seaton, Ultraviolet spectra of planetary nebulae IV: The C III 2297 dielectronic recombination line and dust absorption in the C IV λ1549 resonance doublet, Mon. Not. R. Astron. Soc. 195, 21P-26P (1981).ADSGoogle Scholar
  86. 86.
    D. R. Bates and H. S. W. Massey, The negative ions of atomic and molecular oxygen, Philos. Trans. R. Soc. Lond. Ser. A 239, 269–304 (1943).ADSCrossRefGoogle Scholar
  87. 87.
    M. J. Seaton and P. J. Storey, “Dielectronic Recombination,” in Atomic Processes and Applications, P. G. Burke and B. L. Moisewitsch, Eds., North Holland, Amsterdam, 1976, pp. 134–197.Google Scholar
  88. 88.
    A. Burgess, Dielectronic recombination and the temperature of the solar corona, Astrophys. J. 139, 776–780 (1964).ADSCrossRefGoogle Scholar
  89. 89.
    D. J. Stickland, C. J. Penn, M. J. Seaton, M. A. J. Snijders, and P. J. Storey, Nova Cygni 1978 I: The nebular phase, Mon. Not. R. Astron. Soc. 197, 107–138 (1981).ADSGoogle Scholar
  90. 90.
    P. C. W. Davies and M. J. Seaton, Radiation damping in the optical continuum, J. Phys. B 2, 757–765 (1969).ADSCrossRefGoogle Scholar
  91. 91.
    M. Jones, A method for calculating the algebra of matrix elements for photoionization and line radiation, Comput. Phys. Commun. 7, 353–367 (1974).ADSCrossRefGoogle Scholar
  92. 92.
    H. Nussbaumer and P. J. Storey, Oscillator strengths for excited states of C2+, Astron. Astrophys., to be submitted.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • H. Nussbaumer
    • 1
  • P. J. Storey
    • 2
  1. 1.Institute of AstronomyEHT ZentrumZürichSwitzerland
  2. 2.Department of Physics and AstronomyUniversity College LondonEngland

Personalised recommendations