Skip to main content

Metabolic Mechanisms in Tolerance and Physical Dependence on Alcohol

  • Chapter
The Biology of Alcoholism

Abstract

Diminished response of animals to ethanol after repeated exposure may be not only the result of adaptive changes at the site of ethanol action, but also the result of changes in the ethanol metabolism. The latter case, that is, metabolic tolerance, includes three major factors which may undergo adaptive changes: (1) rate of ethanol elimination and thus rate of acetaldehyde formation, (2) actions of ethanol-derived acetal-dehyde, and (3) ethanol-induced redox effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebi, H., and Wartburg, J. P., 1960, Vergleichend-biologische Aspekte der experimentellen Erforschung chronischer Alkoholwirkungen, Bull. Schweiz. Akad. Med Wiss. 16:25.

    Google Scholar 

  • Albertini, A., and Bonera, E., 1972, L’alcool-deidrogenasi epatica umana: Eterogenicità, regolazione e significato clinico delie variazioni dell’ attività enzimatica, Quad. Sclavo Diagn. Clin. Lab. 8:229.

    Google Scholar 

  • Albertini, A., Bonera, E., Bordoni, L., and Galante, T., 1967, Comportamento di alcuni enzimi epatici e serici negli etilisti chronici, Ist. Lomb. Accad. sci. Lett., Rend. sci. Biol. Med. B-101:329.

    Google Scholar 

  • Alpers, H. S., McLaughlin, B. R., Mix, W. M., Davis, V. E., 1975, Inhibition of catecholamine uptake and retention in synaptosomal preparations by tetrahydroiso-quinoline and tetrahydroprotoberberine alkaloids, Biochem. Pharmacol. 24:1391–96.

    Google Scholar 

  • Azevedo, I., and Osswald, W., 1977, Adrenergic nerve degeneration induced by condensation products of adrenaline and acetaldehyde, Naunyn-Schmiedeberg’s Arch. Pharmacol. 300:139–44.

    Google Scholar 

  • Baird-Lambert, J., Cohen, G., 1975, Effects of several catecholamine-derived tetrahy-droisoquinolines on the hypogastric nerve-vas deferens preparation of the rat, J. Pharm. Pharmacol. 27:958–61.

    Google Scholar 

  • Barchas, J. D., Elliott, G. R., DoAmaral, J. R., Erdelyi, E., O’Connor, S., Bowden, M., Brodie, H. K. H., Berger, P. A., Renson, J., and Wyatt, R. J., 1974, Tryptolines formation from tryptamines and 5-MTHF (5-methyltetrahydrofolic acid) by human platelets, Arch. Gen. Psychiatry 31:862–67.

    Google Scholar 

  • Bigdeli, M. G., and Collins, M. A., 1975, Tissue catecholamines and potential tetrahy-droisoquinoline alkaloid metabolites: A gas Chromatographic assay method with electron capture detection, Biochem. Med. 12:55–65.

    Google Scholar 

  • Bleyman, M. A., and Thurman, R. G., 1979, Comparison of acute and chronic ethanol administration on rates of ethanol elimination in the rat in vivo, Biochem. Pharmacol. 28:2027.

    Google Scholar 

  • Blum, K., Eubanks, J. D., Wallace, J. E., Schwertner, H., and Morgan, W. W., 1976, Possible role of tetrahydroisoquinoline alkaloids in postalcohol intoxication states, Ann. N. Y. Acad. Sci. 273:234–246.

    Google Scholar 

  • Bode, C., Goebell, H., and Stähler, M., 1970. Änderungen der Alkoholdehydrogenase-Aktivität in der Rattenleber durch Eiweissmangel und Äthanol, Z. Gesamte Exp. Med. 152:111.

    Google Scholar 

  • Bonera, E., Albertini, A., Cessi, D., and Spandrio, L., 1968, Studio morfologico e biochimico del fegato di ratto nella intossicazione cronica alcoolica, Arch. It. Mal. Appar. Dig. 35:130.

    Google Scholar 

  • Brezenoff, H. E., and Cohen, G., 1973, Hypothermia following intraventricular injection of a dopamine-derived tetrahydroisoquinoline alkaloid, Neuropharmacology 12:1033–1038.

    Google Scholar 

  • Brossi, A., Rice, K. C., Mak, C-P., Reden, J., Jacobson, A. E., Nimitkitpaisan, Y., Skolnick, P., and Daly, J., 1980, Mammalian alkaloids, 8. Synthesis and biological effects of tetrahydropapaveroline related l-b enzyl tetrahydroisoquinolines. J. Med. Chem. 23:648–652.

    Google Scholar 

  • Brown, Z. W., Amit, Z., and Smith, B., 1980, Examination of the role of tetrahydroisoquinoline alkaloids in the mediation of ethanol consumption in rats, in “Biological Effects of Alcohol: Advances in Experimental Medicine and Biology” (H. Begleiter, ed.), Vol. 126, pp. 103–120, Plenum Press, New York.

    Google Scholar 

  • Buckholtz, N. S., 1980, Neurobiology of tetrahydro-β-carbolines, Life sci. 27:893–903.

    Google Scholar 

  • Burbridge, T. N., Sutherland, V. C., Hine, C. H., and Simon, A., 1959, Some aspects of the metabolism of alcohol in vitro, J. Pharmacol. Exp. Ther. 126:70.

    Google Scholar 

  • Burnett, K. G., and Felder, M. R., 1980, Ethanol metabolism in Peromyscus genetically deficient in alcohol dehydrogenase, Biochem. Pharmacol. 29:125.

    Google Scholar 

  • Cederbaum, A. I., Lieber, C. S., and Rubin, E., 1974, Effects of chronic ethanol treatment on mitochondrial functions, Arch. Biochem. Biophys. 165:560.

    Google Scholar 

  • Cederbaum, A. I., Dicker, E., Lieber, C. S., and Rubin, E., 1977, Factors contributing to the adaptive increase in ethanol metabolism due to chronic consumption of ethanol, Alcoholism 1:27.

    Google Scholar 

  • Church, A. C., Fuller, J. L., Dudek, B. C., 1977, Behavioral effects of salsolinol and ethanol on mice selected for sensitivity to alcohol-induced sleep time, Drug Alcohol Depend. 2:443–52.

    Google Scholar 

  • Clement-Cormier, Y., Meyerson, L. R., Phillips, H., and Davis, V. E., 1979, Dopamine receptor topography characterization of antagonist requirements of striatal-sensitive adenylate cyclase using protoberberine alkaloids, Biochem. Pharmacol. 28:3123–3129.

    Google Scholar 

  • Cohen, G., 1971, Tetrahydroisoquinoline alkaloids in the adrenal medulla after perfusion with “blood concentrations” of (14C) acetaldehyde. Biochem. Pharmacol. 20:1757–61.

    Google Scholar 

  • Cohen, G., and Collins, M., 1970, Alkaloids from catecholamines in adrenal tissue: Possible role in alcoholism, Science 167:1749–1751.

    Google Scholar 

  • Cohen, G., Mytilineou, C., Barrett, R. E., 1972. 6,7-Dihydroxytetrahydroisoquinoline: Uptake and storage by peripheral sympathetic nerve of the rat, Science 175:1269–72.

    Google Scholar 

  • Cohen, G., Heikkila, R. E., Dembiec, D., Sang, D., Teitel, S., and Brossi, A., 1974, Pharmacologic activity of stercoisomers of 1-substituted 6,7-dihydroxy-1,2,3,4-tetrah-ydroisoquinolines: Inhibition of 3H-dopamine accumulation by rat brain slices and lipolytic activity with isolated mouse fat cells, Eur. J. Pharmacol. 29:292–97.

    Google Scholar 

  • Cohen, G., Sinet, P. M., and Heikkila, R., 1980, Ethanol oxidation by rat brain in vivo, Alcoholism 4:366–369.

    Google Scholar 

  • Collins, M. A., 1980, Neuroamine condensations in human subjects, Adv. Exp. Med. Biol. 126:87–102.

    Google Scholar 

  • Collins, M. A., and Bigdeli, M. G., 1975, Tetrahydroisoquinolines in vivo, I. Rat brain formation of salsolinol, a condensation product of dopamine and acetaldehyde, under certain conditions during ethanol intoxication, Life sci. 16:585–601.

    Google Scholar 

  • Collins, M. A., Nijm, W. P., Borge, G. F., Teas, G., and Goldfarb, C., 1979, Dopamine-related tetrahydroisoquinolines: Significant urinary excretion by alcoholics after alcohol consumption, Science 206:1184–1186.

    Google Scholar 

  • Costall, B., Naylor, R. J., and Pinder, R. M., 1976, Hyperactivity induced by tetrahydroisoquinoline derivatives injected into the nucleus accumbens, Eur. J. Pharmacol. 39:153–60.

    Google Scholar 

  • Cruz, A. G., Correia, J. P., and Menezes, L., 1975, Ethanol metabolism in liver cirrhosis and chronic alcoholism, Acta Hepato-Gastroenterol. 22:369.

    Google Scholar 

  • Dajani, R. M., Danielski, J., and Orten, J. M., 1963, The utilization of ethanol, II. The alcohol-acetaldehyde dehydrogenase systems in the livers of alcohol treated rats, J. Nutr. 80:196.

    Google Scholar 

  • Dajani, R. M., Ghandur-Mnaymneh, L., Harrison, M., and Nassar, T., 1965, The utilization of ethanol, III. Liver changes induced by alcohol, J. Nutr. 86:29.

    Google Scholar 

  • Davis, V. E., and Walsh, M. J., 1970, Alcohol, amines, and alkaloids: A possible biochemical basis for alcohol addiction, Science 167:1005–1007.

    Google Scholar 

  • Davis, V. E., Cashaw, J. L., and McMurtrey, K. D., 1975, Disposition of catecholamine-derived alkaloids in mammalian systems, in “Alcohol Intoxication and Withdrawal: Experimental Studies” (M. M. Gross, ed.), Vol. II, pp 65–78, Plenum Press, New York.

    Google Scholar 

  • Deitrich, R. A., 1971, Genetic aspects of increase in rat liver aldehyde dehydrogenase induced by phenobarbital, Science 173:334.

    Google Scholar 

  • Deitrich, R. A., and Erwin, V. G., 1980, Biogenic amine-aldehyde condensation products: Tetrahydroisoquinolines and tryptolines (β-Carbolines), Ann. Rev. Pharmacol. Toxicol. 20:55.

    Google Scholar 

  • Deitrich R. A., Collins, A. C., and Erwin, V. G., 1972, Genetic influence upon phenobar-bital-induced increase in rat liver supernatant aldehyde dehydrogenase activity, J. Biol Chem. 247:7232.

    Google Scholar 

  • Deitrich, R. A., Bludeau, P., Stock, T., and Roper, M., 1977, Induction of different rat liver supernatant aldehyde dehydrogenases by phenobarbital and tetrachlorodibenzo-p-dioxin, J. Biol. Chem. 252:6169.

    Google Scholar 

  • Dippel, C., and Ferguson, J. H., 1977, Effect of chronic ethanol administration on liver alcohol dehydrogenase activity in mice, Biochem. Pharmacol. 26:441.

    Google Scholar 

  • Domschke, S., Domschke, W., and Lieber, C. S., 1974, Hepatic redox state: Attenuation of the acute effects of ethanol induced by chronic ethanol consumption, Life sci. 15:1327.

    Google Scholar 

  • Dow, J., Krasner, N., and Goldberg, A., 1975, Relation between hepatic alcohol dehydrogenase activity and the ascorbic acid in leucocytes of patients with liver disease, Clin. sci. Mol. Med. 49:603.

    Google Scholar 

  • Duncan, C., and Deitrich, R. A., 1980, A critical evaluation of tetrahydroisoquinoline induced ethanol preference in rats, Pharmacol., Biochem. Behav. 13:265–281.

    Google Scholar 

  • Elbel, H., and Schleyer, F., 1956, “Blutalkohol: Die Wissenschaftlichen Grundlagen der Beurteilung von Blutalkoholbefunden bei Strassenverkehrsdelikten,” 2nd ed., pp. 87–92, Georg Thieme Verlag, Stuttgart.

    Google Scholar 

  • Eriksson, C. J. P., 1980, Elevated blood acetaldehyde levels in alcoholics and their relatives: A reevaluation, Science 207:1383.

    Google Scholar 

  • Eriksson, C. J. P., and Deitrich, R. A., 1980, Evidence against a biphasic effect of acetaldehyde on voluntary ethanol consumption in rats, Pharmacol., Biochem. Behav. 13(Suppl. 1):291.

    Google Scholar 

  • Erikson, C. J. P., Lindros, K. O., and Forsander, O. A., 1974. 2, 4-Dinitrophenol-induced increase in ethanol and acetaldehyde oxidation in the perfused rat liver, Biochem. Pharmacol. 23:2193.

    Google Scholar 

  • Eriksson, C. J. P., Marselos, M., and Koivula, T., 1975, Role of cytosolic rat liver aldehyde dehydrogenase in the oxidation of acetaldehyde during ethanol metabolism in vivo, Biochem. J. 152:709.

    Google Scholar 

  • Erwin, V. G., and Deitrich, R. A., 1966, Brain aldehyde dehydrogenase: Localization, purification, and properties, J. Biol. Chem. 241:3533.

    Google Scholar 

  • Fazekas, I., and Rengei, B., 1968, Über die Alkoholdehydrogenase-aktivität der Organe normalen und alkoholbehandelter Ratten, Enzymologia 34:231.

    Google Scholar 

  • Feller, D. R., Venkataraman, R., and Miller, D. D., 1975, Comparative actions of the trimetoquinol, tetrahydropapaveroline and salsolinol isomers in β-adrenoeeptor systems, Biochem. Pharmacol. 24:1357–1359.

    Google Scholar 

  • Fiaccavento, S., Albertini, A., Zorzi, M., and Marconi, M., 1967, Attività enzimatiche ed aspetti ultrastrutturali del fegato umano nell’epatopatia etilica, Biochem. Biol. Sper. 6:225.

    Google Scholar 

  • Figueroa, R. B., and Klotz, A. P., 1962a, Alterations of liver alcohol dehydrogenase and other hepatic enzymes in alcoholic cirrhosis, Gastroenterology 43:10.

    Google Scholar 

  • Figueroa, R. B., and Klotz, A. P., 1962b, Alterations of alcohol dehydrogenase and other hepatic enzymes following oral alcohol intoxication, Amer. J. Clin. Nutr. 11:235.

    Google Scholar 

  • Figueroa, R. B., and Klotz, A. P., 1962c, Alterations of alcohol dehydrogenase and other hepatic enzymes in experimental chronic liver disease, Metabolism 11:1169.

    Google Scholar 

  • Figueroa, R. B., and Klotz, A. P., 1964, The effect of whiskey and low protein diet on hepatic enzymes in rats, Am. J. Dig. Dis. 9:121.

    Google Scholar 

  • Gaion, R. M., Dorigo, P., Prosdocimi, M., and Fassina, G., 1976, Influence of tetrahydro-papavoroline on adipose tissue metabolism, in comparison with that of noradrenaline, theophylline and papaverine, Pharmacol. Res. Commun. 8:525–538.

    Google Scholar 

  • Gordon, E. R., 1977, ATP metabolism in an ethanol-induced fatty liver, Alcoholism 1:21.

    Google Scholar 

  • Greenberg, R. S., and Cohen, G., 1972, Tetrahydroisoquinolines and the catecholamine-binding granules of the adrenal medulla, Eur. J. Pharmacol. 18:291–94.

    Google Scholar 

  • Greenberger, N. J., Cohen, R. B., and Isselbacher, K. J., 1965, The effect of chronic ethanol administration on liver alcohol dehydrogenase activity in the rat, Lab. Invest. 14:264.

    Google Scholar 

  • Greenfield, N. J., Pietruszko, R., Lin, G., and Lester, D., 1976, The effect of ethanol ingestion on the aldehyde dehydrogenases of rat liver, Biochim. Biophys. Acta. 428:627.

    Google Scholar 

  • Guerri, C., Wallace, R., and Grisolia, S., 1978, The influence of prolonged ethanol intake on the levels and turnover of alcohol and aldehyde dehydrogenases and of brain (Na+K)-ATPase of rats, Eur. J. Biochem. 86:581.

    Google Scholar 

  • Hamilton, M. G., and Hirst, M., 1980, Alcohol-related tetrahydroisoquinolines: Pharmacology and identification, Substance and Alcohol Actions/Misuse 1:121.

    Google Scholar 

  • Hamilton, M. G., Blum, K., and Hirst, M., 1978, Identification of an isoquinoline alkaloid after chronic exposure to ethanol, Alcoholism: Clin. Exp. Res. 2:133–37.

    Google Scholar 

  • Hasumura, Y., Teschke, R., and Lieber, C. S., 1975, Acetaldehyde oxidation by hepatic mitochondria: Decrease after chronic ethanol consumption, Science 189:727.

    Google Scholar 

  • Hawkins, R. D., Kalant, H., and Khanna, J. M., 1966, Effects of chronic intake of ethanol on rate of ethanol metabolism, Can. J. Physiol. Pharmacol. 44:241.

    Google Scholar 

  • Heikkila, R., Cohen, G., and Dembiec, D., 1971, Tetrahydroisoquinoline alkaloids: Uptake by rat brain homogenates and inhibition of catecholamine uptake, J. Pharmacol. Exp. Ther. 179:250–58.

    Google Scholar 

  • Higgins, J. J., 1979, Control of ethanol oxidation and its interaction with other metabolic systems, in “Biochemistry and Pharmacology of Ethanol” (E. Majchrowicz and E. P. Noble, eds.), Vol. 2, pp. 249–351, Plenum Press, New York.

    Google Scholar 

  • Hjelle, J. J., Atkinson, N., and Petersen, D. R., 1981, The effects of chronic ethanol ingestion on ethanol binding to hepatic cytrochrome p-450 and on certain hepatic and renal parameters in the “long sleep” and “short sleep” and mouse, Alcoholism 5:198–203.

    Google Scholar 

  • Holtz, P., Stock, K., and Westermann, E., 1963, Über die Blutdruckwirkung des Dopamins, Naunyn-Schmeidebergs Exp. Arch. Pathol. Pharmakol. 246:133–46.

    Google Scholar 

  • Holtz, P., Stock, K., and Westermann, E., 1964, Pharmakologie des tetrahydropapaverolins und seine Entstehung aus Dopamin, Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 248:387–405.

    Google Scholar 

  • Honecker, H., and Rommelspacher, H., 1978, Tetrahydronorharmane (tetrahydro-β-carboline), a physiologically occuring compound of indole metabolism, Naunyn-Schmiedebergs Arch. Pharmacol. 305:135–41

    Google Scholar 

  • Horton, A. A., 1971, Induction of aldehyde dehydrogenase in a mitochondrial fraction, Biochem. Biophys. Acta 253:514.

    Google Scholar 

  • Horton, A. A., and Barrett, M. C., 1976, Rates of induction of mitochondrial aldehyde dehydrogenase in rat liver, Biochem. J. 156:177.

    Google Scholar 

  • Hsu, L. L., and Mandell, A. J., 1975, Enzymatic formation of tetrahydro-β-carboline from tryptamine and 5-methyltetrahydrofolic acid in rat brain fractions: Regional and subcellular distribution, J. Neurochem. 24:631–36.

    Google Scholar 

  • Iribe, K., Buijten, J. C., and Rydberg, U., 1978, Effects of long-term administration of trace metal ions and ethanol on alcohol and aldehyde dehydrogenase activities in rat liver preparations, Jpn. J. Stud. Alcohol 13:200.

    Google Scholar 

  • Isbell, H., Fraser, H. F., Wikler, A., Belleville, R. E., and Eisenman, A. J., 1955, An experimental study of the etiology of “rum fits” and delirium tremens, Q. J. Stud. Alcohol 16:1.

    Google Scholar 

  • Israel, Y., Videla, L., and Bernstein, J., 1975, Hypermetabolic state after chronic ethanol consumption: Hormonal interrelations and pathogenic implications, Fed. Proc. Fed. Am. Soc. Exp. Biol. 34:2052.

    Google Scholar 

  • Israel, Y., Khanna, J. M., Kalant, H., Stewart, D. J., Macdonald, J. A., Rachamin, G., Wahid, S., and Orrego, H., 1977, The spontaneously hypertensive rat as a model for studies on metabolic tolerance to ethanol, Alcoholism 1:39.

    Google Scholar 

  • Iturriaga, H., Pereda, T., Pino, M. E., and Ugarte, G., 1973, Relationship between liver catalase activity and ethanol metabolism, Arch. Biol. Med. Exp. 9:7.

    Google Scholar 

  • Iwasawa, Y., and Kiyomoto, A., 1967, Studies on tetrahydroisoquinolines (THI), I. Bronchodilator activity and structure-activity relationship, Jpn. J. Pharmacol. 17:143–52.

    Google Scholar 

  • Jenkins, W. J., and Peters, T. J., 1980, Selectively reduced hepatic acetaldehyde dehy-drogenase in alcoholics, Lancet 8169:628.

    Google Scholar 

  • Kalant, H., Khanna, J. M., and Endrenyi, L., 1975, Effect of pyrazole on ethanol metabolism in ethanol-tolerant rats, Can. J. Physiol. Pharmacol. 53:416.

    Google Scholar 

  • Kater, R. M. H., Carulli, N., and Iber, F. L., 1969, Differences in the rate of ethanol metabolism in recently drinking alcoholic and nondrinking subjects, Amer. J. Clin. Nutr. 22:1608.

    Google Scholar 

  • Kenyhercz, T. M., and Kissinger, 1978, High-performance liquid Chromatographic assay of isoquinoline alkaloid formation from reaction of biogenic amines and aldehydes, J. Pharm. sci. 67:112–113.

    Google Scholar 

  • Khanna, J. M., Kalant, H., and Bustos, G., 1967, Effects of chronic intake of ethanol on rate of ethanol metabolism, II. Influence of sex and schedule of ethanol administration, Can. J. Physiol. Pharmacol 45:777.$

    Google Scholar 

  • Khanna, J. M., Kalant, H., and Lin, G., 1972, Significance in vivo of the increase in microsomal ethanol-oxidizing system after chronic administration of ethanol, phenobarbital and chlorcyclizine, Biochem. Pharmacol. 21:2215.

    Google Scholar 

  • Khanna, J. M., Kalant, H., and Loth, J., 1975, Effect of chronic intake of ethanol on lactate/pyruvate and β-hydroxybutyrate/acetoacetate ratios in rat liver, Can. J. Physiol. Pharmacol. 53:299.

    Google Scholar 

  • Khanna, J. M., Lindros, K. O., Israel, Y., and Orrego, H., 1977, In vivo metabolism of ethanol at high and low concentrations, in “Alcohol and Aldehyde Metabolizing Systems” (R. G. Thurman, J. R. Williamson, H. R. Drott, and B. Chance, (eds.), Vol. 3, pp. 325–334, Academic Press, New York.

    Google Scholar 

  • Kinard, F. W., and Hay, M. G., 1960, Effect of ethanol administration on brain and liver enzyme activities, Am. J. Physiol. 198:657.

    Google Scholar 

  • Kiyomoto, A., Sato, M., Nagao, T., and Nakajima, H., 1969, Studies on tetrahydroisoquinolines (THI), VII. Effect of trimetoquinol on the cardiovascular system, Eur. J. Pharmacol. 5:303–12.

    Google Scholar 

  • Kiyomoto, A., Iwasawa, Y., and Harigaya, S., 1970, Studies on tetrahydroisoquinolines (THI), VI. Effects of trimetoquinol on tracheal and some other smooth muscles, Arzneim.-Forsch. 20:46–52.

    Google Scholar 

  • Koivula, T., and Lindros, K. O., 1975, Effects of long-term ethanol treatment on aldehyde and alcohol dehydrogenase activities in rat liver, Biochem. Pharmacol. 24:1937.

    Google Scholar 

  • Korsten, M. A., Matsuzaki, S., Feinman, L., and Lieber, C. S., 1975, High blood acetaldehyde levels after ethanol administration: Differences between alcoholic and nonalcoholic subjects, New Engl. J. Med. 292:386.

    Google Scholar 

  • Laidlaw, P. P., 1910, The action of tetrahydropapaveroline hydrochloride, J. Physiol. 40:480–91.

    Google Scholar 

  • Lee, O. S., Mears, J. A., Miller, D. D., and Feller, D. R., 1974, Evaluation of the optical isomers of tetrahydroisoquinolines in rat adipose tissue and guinea pig aorta, Eur. J. Pharmacol. 28:225–29.

    Google Scholar 

  • Lieber, C. S., and DeCarli, L. M., 1968, Ethanol oxidation by hepatic microsomes: Adaptive increase after ethanol feeding, Science 162:917.

    Google Scholar 

  • Lieber, C. S., and DeCarli, L. M., 1970, Hepatic microsomal ethanol-oxidizing system: In vitro characteristics and adaptive properties in vivo, J. Biol. Chem. 245:2505.

    Google Scholar 

  • Lieber, C. S., and DeCarli, L. M., 1972, The role of the hepatic microsomal ethanol oxidizing system (MEOS) for ethanol metabolism in vivo, J. Pharmacol. Exp. Ther. 181:279.

    Google Scholar 

  • Lieberman, F. L., 1963, The effects of liver disease on the rate of ethanol metabolism in man, Gastroenterology 44:261.

    Google Scholar 

  • Lindros, K., Salaspuro, M., and Pikkarainen, P., 1977, Studies on the role of the ADH pathway in increased ethanol elimination after chronic alcohol intake in the rat and man. in “Alcohol and Aldehyde Metabolizing Systems,” (R. G. Thurman, J. R. Williamson, H. R. Drott, and B. Chance, eds.) Vol. 3, pp. 343–354, Academic Press, New York.

    Google Scholar 

  • Locke, S., Cohen, G., Dembiec, D., 1973, Uptake and accumulation of 3H-6,7-dihydrox-ytetraisoquinoline by peripheral sympathetic nerves in vivo, J. Pharmacol. Exp. Ther. 187:56–67.

    Google Scholar 

  • Lumeng, L., Bosron, W. F., and Li, T. K., 1979, Quantitative correlation of ethanol elimination rates in vivo with liver alcohol dehydrogenase activities in fed, fasted and food-restricted rats, Biochem. Pharmacol. 28:1547.

    Google Scholar 

  • Majchrowicz, E., Lipton, M. A., Meek, J. L., and Hall, L., 1968, Effects of chronic ethanol consumption on the clearance of acutely administered ethanol and acetaldehyde from blood in rats, Q. J. Stud. Alcohol 29:553.

    Google Scholar 

  • Marshall, A., and Hirst, M., 1976, Potentiation of ethanol narcosis by dopamine and 1-dopa-based isoquinolines, Experientia 32:201–203.

    Google Scholar 

  • Masoro, E. J., Abramovitch, and Birchard, J. R., 1953, Mechanism of C14-ethanol by surviving rat tissues, Am. J. Physiol. 173:37.

    Google Scholar 

  • Mazzucchelli, B., and Guarneri, A., 1965, L’assorbimento e l’eliminazione dell’alcool etilico nei soggetti normali’e negli alcoolisti cronici senza danno somatico, Minerva Medicol-egale 84:5.

    Google Scholar 

  • McClearn, G. E., Bennett, E. L., Hebert, M., Kakihana, R., and Schlesinger, K., 1964, Alcohol dehydrogenase activity and previous ethanol consumption in mice, Nature 203:793.

    Google Scholar 

  • Melchior, C. L., and Deitrich, R. A., 1980, Half-lives and actions of intracerebrally injected isoquinolines, Adv. Exp. Med. Biol. 126:121–29.

    Google Scholar 

  • Melchior, C. L., and Myers, R. D., 1977, Preference for alcohol evoked by tetrahydro-papaveroline (THP) chronically infused in the cerebral ventricle of the rat, Pharmacol., Biochem. Behav. 7:19.

    Google Scholar 

  • Meiler, E., Rosengarten, H., Friedhoff, A. J., Stebbins, R. D., and Silber, R., 1975. 5-methyltetrahydrofolic acid as a methyl donor for biogenic amines: Enzymatic formation of formaldehyde, Science 187:171–73.

    Google Scholar 

  • Mendelson, J. H., Mello, N. K., Corbett, C., and Ballard, R., 1965, Puromycin inhibition of ethanol ingestion and liver alcohol dehydrogenase activity in the rat, J. Psychiatr. Res. 3:133.

    Google Scholar 

  • Mezey, E., 1972, Duration of the enhanced activity of the microsomal ethanol-oxidizing enzyme system and rate of ethanol degradation in ethanol-fed rats after withdrawal, Biochem. Pharmacol. 21:137.

    Google Scholar 

  • Mezey, E., and Tobon, F., 1971, Rates of ethanol clearance and activities of the ethanol-oxidizing enzymes in chronic alcoholic patients, Gastroenterology 61:707.

    Google Scholar 

  • Mikata, A., Dimakulangan, A. A., and Hartroft, W. S., 1963, Metabolism of ethanol in rats with cirrhosis, Gastroenterology 44:159.

    Google Scholar 

  • Mirone, L., 1965a, Effect of ethanol on growth and liver components in mice, Life sci. 4:1823.

    Google Scholar 

  • Mirone, L., 1965b, Effect of prolonged ethanol intake on body weight, liver weight and liver nitrogen, glycogen, ADH, NAD, and NADH of mice, Life sci. 4:1195.

    Google Scholar 

  • Misra, P. S., Lefèvre, A., Ishii, H., Rubin, E., and Lieber, C. S., 1971, Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats, Am. J. Med. 51:346.

    Google Scholar 

  • Mistilis, S. P., and Birchall, A., 1969, Induction of alcohol dehydrogenase in the rat, Nature 223:199.

    Google Scholar 

  • Morrison, G. R., and Brock, F. E., 1967, Quantitative measurement of alcohol dehydrogenase activity within the liver lobule of rats after prolonged ethanol ingestion, J. Nutr. 92:286.

    Google Scholar 

  • Moura, D., Azevedo, I., Osswald, W., 1977, Hepatotoxicity of the condensation product of adrenaline with acetaldehyde, J. Pharm. Pharmacol. 29:255–56.

    Google Scholar 

  • Mukherji, B., Kashiki, Y., Ohyanagi, H., and Sloviter, H. A., 1975, Metabolism of ethanol and acetaldehyde by the isolated perfused rat brain, J. Neurochem. 24:841.

    Google Scholar 

  • Myers, R. D., and Melchior, C. L., 1977, Alcohol drinking: Abnormal intake caused by tetrahydropapaveroline in brain, Science 196:554.

    Google Scholar 

  • Myers, R. D., and Oblinger, N. M., 1977, Alcohol drinking in the rat induced by acute intracerebral infusion of two tetrahydroisoquinolines and a β-carboline, Drug Alcohol Depend. 1:469–483.

    Google Scholar 

  • Myers, R. D., Melchior, C. L., and Swartzwelder, H. S., 1980, Amine-aldehyde metabolites and alcoholism: Fact, myth or uncertainty, Substance and Alcohol Actions/Misuse 1:223–238.

    Google Scholar 

  • Mytilineou, C., Cohen, G., Barrett, R., 1974, Tetrahydroisoquinoline alkaloids: Uptake and release by adrenergic nerves in vivo, Eur. J. Pharmacol. 25:390–401.

    Google Scholar 

  • Nimitkitpaisan, Y., and Skolnick, P., 1978, Catecholamine receptors and cyclic AMP formation in the central nervous system: Effect of tetrahydroisoquinoline derivatives, Life sci. 23:375–82.

    Google Scholar 

  • Nimura, T., 1966, The metabolism of alcohol in chronic alcoholics, Jpn. J. Stud. Alcohol 1:100.

    Google Scholar 

  • O’Neill, P. J., and Rahwan, R. G., 1977, Absence of formation of brain salsolinol in ethanol-dependent mice, J. Pharmacol. Exp. Ther. 200:306–13.

    Google Scholar 

  • Petersen, D. R., and Tabakoff, B., 1979, Characterization of brain acetaldehyde oxidizing systems in the mouse, Drug Alcohol Depend. 4:137.

    Google Scholar 

  • Petersen, D. R., Collins, A. C., and Deitrich, R. A., 1977, Role of liver cytosolic aldehyde dehydrogenase isozymes in control of blood acetaldehyde concentrations, J. Pharmacol. Exp. Ther. 201:471.

    Google Scholar 

  • Piascik, M. T., Osei-Gyimah, P., Miller, D. D., and Feller, D. R., 1978, Steroselective interaction of tetrahydroisoquinolines in β-adrenoceptor systems, Eur. J. Pharmacol. 48:393–401.

    Google Scholar 

  • Pieper, W. A., and Skeen, M. J., 1973, Changes in rate of ethanol elimination associated with chronic administration of ethanol to chimpanzees and rhesus monkeys, Drug Metab. Dispos. 1:634.

    Google Scholar 

  • Pieper, W. A., Skeen, M. J., McClure, H. M., and Bourne, P. G., 1972, The chimpanzee as an animal model for investigating alcoholism, Science 176:71.

    Google Scholar 

  • Rachamin, G., Macdonald, J. A., Wahid, S., Clapp, J. J., Khanna, J. M., and Israel, Y., 1980, Modulation of alcohol dehydrogenase and ethanol metabolism by sex hormones in the spontaneously hypertensive rat: Effect of chronic ethanol administration, Biochem. J. 186:483.

    Google Scholar 

  • Raskin, N. H., and Sokoloff, L., 1972a, Enzymes catalysing ethanol in neural and somatic tissues, J. Neurochem. 19:273.

    Google Scholar 

  • Raskin, N. H., and Sokoloff, L., 1972b, Ethanol induced adaptation of alcohol dehydrogenase activity in rat brain, Nature 236:138.

    Google Scholar 

  • Raskin, N. H., and Sokoloff, L., 1974, Changes in brain alcohol dehydrogenase activity during chronic ethanol ingestion and withdrawal, J. Neurochem. 22:427.

    Google Scholar 

  • Rawat, A. K., and Kuriyama, K., 1972, Contribution of “substrate shuttles” in hepatic alcohol metabolism in chronic alcoholism, Biochem. Biophys. Res. Commun. 47:517.

    Google Scholar 

  • Rawat, A., Kuriyama, K., and Mose, J., 1973, Metabolic consequences of ethanol oxidation in brains from mice chronically fed ethanol, J. Neurochem. 20:23.

    Google Scholar 

  • Redmond, G., and Cohen, G., 1971, Induction of liver acetaldehyde dehydrogenase: Possible role in ethanol tolerance after exposure to barbiturates, Science 171:387.

    Google Scholar 

  • Rodrigo, R., and Egana, E., 1975, Alcohol: NAD oxidoreductase in brain of rats from a colony fed dilute ethanol for many generations, J. Neurochem. 25:645.

    Google Scholar 

  • Rommelspacher, H., Coper, H., and Strauss, S., 1976. On the mode of formation of tetrahydro β-carbolines, Life Sci. 18:81–88.

    Google Scholar 

  • Ross, D. H., 1978, Inhibition of high affinity calcium binding by salsolinol, Alcoholism: Clin. Exp. Res. 2:139–43.

    Google Scholar 

  • Saint-Blanquat, G., Fritsch, P., and Derache, R., 1972, Activité alcool-déshydrogénasique de la muqueuse gastrique sous l’effet de différents traitements éthanoliques chez le rat, Path. Biol. 20:249.

    Google Scholar 

  • Salaspuro, M. P., 1967, Application of the galactose tolerance test for the early diagnosis of fatty liver in human alcoholics, Scand. J. Clin. Lab. Invest. 20:274.

    Google Scholar 

  • Salaspuro, M. P., and Kesäniemi, Y. A., 1973, Intravenous galactose elimination tests with and without ethanol loading in various clinical conditions, Scand J. Gastroenterology 8:681.

    Google Scholar 

  • Salaspuro, M. P., Lindros, K. O., and Pikkarainen, P. H., 1978, Effect of 4-methylpyrazole on ethanol elimination rate and hepatic redox changes in alcoholics with adequate or inadequate nutrition and in nonalcoholic controls, Metabolism 27:631.

    Google Scholar 

  • Samson, H. H., Morgan, D. C., Price, C. M., Tang, M., and Falk, J. L., 1976, Ethanol elimination rates in normal and ethanol dependent animals, Pharmacol., Biochem. Behav. 5:335.

    Google Scholar 

  • Sandier, M., Carter, S. B., Hunter, K. R., Stern, G. M., 1973. Tetrahydroisoquinoline alkaloids: In vivo metabolites of 1-dopa in man, Nature 241:439–43

    Google Scholar 

  • Santi, R., Ferrari, M., Toth, C. E., Contessa, A. R., Fassina, G., Bruni, A., and Luciani, S., 1967, Pharmacological properties of tetrahydropapaveroline, J. Pharm. Pharmacol. 19:45–51.

    Google Scholar 

  • Sato, M., Yamaguchi, I., and Kiyomoto, A., 1967, Studies on tetrahydroisoquinolines, II. Pharmacological action on cardiovascular system, Jpn. J. Pharmacol. 17:153–63.

    Google Scholar 

  • Schlesinger, K., Bennett, E. L., Hebert, M., and McClearn, G. E., 1966, Effects of alcohol consumption on the activity of liver enzymes in C57BL/Crgl mice, Nature 209:488.

    Google Scholar 

  • Schmidt, E., and Schmidt, F. W., 1960, Enzymmuster menschlicher, Gemebe. Klin. Woch-enschr. 38:957.

    Google Scholar 

  • Schwarzmann, V., Julien, C., Borenstein, P., Étévé, J., and Berthaux, N., 1962, L’alcooldeshydrogénase hépatique chez les alcooliques. Rev. Fr. Etud. Clin. Biol. 7:762.

    Google Scholar 

  • Shah, M. N., Clancy, B. A., and Iber, F. L., 1972, Comparison of blood clearance of ethanol and tolbutamide and the activity of hepatic ethanol-oxidizing and drug-metabolizing enzymes in chronic alcoholic subjects, Amer. J. Clin. Nutr. 25:135.

    Google Scholar 

  • Sheppard, H., and Burghardt, C. R., 1974, Effect of tetrahydroisoquinoline derivitives on the adenylate cyclases of the caudate nucleus (dopamine-type) and erythrocyte (β-type) of the rat, Res. Commun. Chem. Pathol. Pharmacol. 8:527–534.

    Google Scholar 

  • Sheppard, H., and Burghardt, C. R., 1978, The dopamine-sensitive adenylate cyclase of the rat caudate nucleus-3: The effect of aporphines and protoberberines, Biochem. Pharmacol. 27:1113–16.

    Google Scholar 

  • Sheppard, H., Burghardt, C. R., and Teitel, S., 1976, The dopamine-sensitive adenylate cyclase of the rat caudate nucleus, II. A comparison with the isoproterenol-sensitive (beta) adenylate cyclase of the rat erythocyte for inhibition or stimulation by tetrahydroisoquinolines, Mol. Pharmacol. 12:854–861.

    Google Scholar 

  • Sheppard, H., Burghardt, C. R., Teitel, S., 1977, A structure-activity analysis of the preferred conformation of the benzyl substituent of tetrahydropapaveroline at the beta receptor, Res. Commun. Chem. Pathol. Pharmacol. 17:53–59.

    Google Scholar 

  • Shier, W. T., Koda, L. Y., and Bloom, F. E., 1980, Failure to detect conversion of 3H-dopamine to tetrahydroisoquinoline derivatives in the brains of rats treated with alcohol or chlorohydrate, Alcoholism 4:228, Abst. 11

    Google Scholar 

  • Shoemaker, D. W., Cummins, J. T., and Bidder, T. G., 1978, β-carbolines in rat arcuate nucleus, Neuroscience 3:223–39.

    Google Scholar 

  • Shonk, R. F., Miller, D. D., and Feller, D. R., 1971, Influence of substituted tetrahydroisoquinolines and catecholamines on lipolysis in vitro, II. Steroselectivity, Biochem. Pharmacol. 20:3403–12.

    Google Scholar 

  • Sippel, H. W., 1974, The acetaldehyde content in rat brain during ethanol metabolism, J. Neurochem. 23:451.

    Google Scholar 

  • Sippel, H. W., and Eriksson, C. J. P., 1975, The acetaldehyde content in rat brain during ethanol oxidation, Finnish Foundation for Alcohol Studies 23:149.

    Google Scholar 

  • Sjöquist, B., and Magnuson, E., 1980, Analysis of salsolinol and salsoline in biological samples using deutorium-labelled internal standards and gas-chromatography-mass spectrometry, J. Chromat. 183:17–24.

    Google Scholar 

  • Smith, B. R., Brown, Z. W., and Amit, Z., 1980, Chronic intraventricular administration of tetrahydroisoquinoline alkaloids: Lack of effect on voluntary ethanol consumption in the rat, Substance and Alcohol Actions/Misuse 1:209–213.

    Google Scholar 

  • Smyth, R. D., Martin, G. J., Moss, J. N., and Beck, H., 1967, The modification of various enzyme parameters in brain acetylcholine metabolism by chronic ingestion of ethanol, Exp. Med. Surg. 25:1.

    Google Scholar 

  • Spanio, L., and Carulli, N., 1966, Comportamento dell’alcooldeidrogenasi (ADH) epatica in soggetti portatori di epatopatie cirrogene, Acta Vitaminol. Enzymol. 20:53.

    Google Scholar 

  • Stebbins, R. D., Meller, E., Rosengarten, H., Friedhoff, A., and Silber, R., 1976, Identification of N5,N10-methylene tetrahydrofolate reductase as the enzyme involved in the 5-methyl tetrahydrofolate-dependent formation of a β-carboline derivative of 5-hydroxytryptamine in human platelets, Arch. Biochem. Biophys. 173:673–79.

    Google Scholar 

  • Sze, P. Y., 1975, The permissive effect of glucocorticoids in the induction of liver alcohol dehydrogenase by ethanol, Biochem. Med. 14:156.

    Google Scholar 

  • Tabakoff, B., Anderson, R. A., and Ritzman, R. F., 1976, Brain acetaldehyde after ethanol administration, Biochem. Pharmacol. 25:1305.

    Google Scholar 

  • Tampier, L., Alpers, H. S., and Davis, V. E., 1977, Influence of catecholamine-derived alkaloids and β-adrenergic blocking agents on stereospecific binding of 3H-naloxone, Res. Commun. Chem. Pathol. Pharmacol. 17:731–34.

    Google Scholar 

  • Tennyson, V. M., Cohen, G., Mytilineou, C., and Heikkila, R. E., 1973 6,7-Dihydroxy-tetrahydroisoquinoline: Electron microscopic evidence for uptake into the amine-binding vesicles in sympathetic nerves of rat iris and pineal gland, Brain Res. 51:161–69.

    Google Scholar 

  • Thurman, R. G., Yuki, T., Bleyman, M. A., and Wendell, G., 1979, The adaptive increase in ethanol metabolism due to pretreatment with ethanol: A rapid phenomenon, Drug Alcohol Depend. 4:119.

    Google Scholar 

  • Tobon, F., and Mezey, E., 1971, Effect of ethanol administration on hepatic ethanol and drug-metabolizing enzymes and on rates of ethanol degradation, J. Lab. Clin. Med. 77:110.

    Google Scholar 

  • Tottmar, O., and Marchner, H., 1975, Characteristics of the acetaldehyde oxidation in rat liver, and the effects of antabuse, 4-methylpyrazole and unknown dietary factors on the hepatic output of acetaldehyde, Finnish Foundation for Alcohol Studies 23:47.

    Google Scholar 

  • Tottmar, S. O. C., Kiessling, K. H., and Forsling, M., 1974, Effects of phenobarbital and ethanol on rat liver aldehyde dehydrogenases, Acta Pharmacol. Toxicol. 35:270.

    Google Scholar 

  • Troshina, A. E., 1957, O mekhanizmakh privykaniya organizma k alkogolyu, Sborn. Trud. Ryazansk. Med. Inst. 4:1.

    Google Scholar 

  • Truitt, E. B., 1971, Blood acetaldehyde levels after alcohol consumption by alcoholic and nonalcoholic subjects in “Biological Aspects of Alcohol, Advances in Mental Science” (M. K. Roach, W. M. Isaac, and P. J. Creaven, eds.), Vol. 3, pp. 212–232, University of Texas Press, Austin.

    Google Scholar 

  • Turner, A. J., Baker, K. M., Algeri, S., Frigerio, A., and Garattini, S., 1974, Tetrahydro-papaveroline: Formation in vivo and in vitro in rat brain, Life Sci. 14:2247–57.

    Google Scholar 

  • Tygstrup, N., and Lundquist, F., 1962, The effect of ethanol on galactose elimination in man, J. Lab. Clin. Med. 59:102.

    Google Scholar 

  • Ugarte, G., Pereda, T., Pino, M. E., Lorca, F., and Sepulveda, F., 1967, Metabolismo del etanol en pacientes alcoholicos con y sin dano hepatico, II. Velocidad metabolica del etanol y aumento de la lacticidemia, Rev. Med. Chile 95:67.

    Google Scholar 

  • Ugarte, G., Pino, M. E., and Insunza, I., 1967, Hepatic alcohol dehydrogenase in alcoholic addicts with and without hepatic damage, Amer. J. Dig. Dis. 12:589.

    Google Scholar 

  • Ugarte, G., Iturriaga, H., Pereda, T., and Pino, M. E., 1970, Metabolismo del etanol en pacientes alcoholicos: Algunos factores que condicionan el metabolismo del alcohol in vivo, Rev. Med. Chile 98:703.

    Google Scholar 

  • Ugarte, G., Pereda, T., Pino, M. E., and Iturriaga, H., 1972, Influence of alcohol intake, length of abstinence and meprobamate on the rate of ethanol metabolism in man, Q. J. Stud. Alcohol 33:698.

    Google Scholar 

  • Veloso, D., Passonneau, L. V., and Veech, R. L., 1972, The effects of intoxicating doses of ethanol upon intermediary ethanol metabolism in rat brain, J. Neurochem. 19:2679.

    Google Scholar 

  • Videla, L., and Israel, Y., 1970. Factors that modify the metabolism of ethanol in rat liver and adaptive changes produced by its chronic administration, Biochem. J. 118:275.

    Google Scholar 

  • Videla, L., Bernstein, J., and Israel, Y., 1973, Metabolic alterations produced in the liver by chronic ethanol administration: Increased oxidative capacity, Biochem. J. 134:507.

    Google Scholar 

  • Wallgren, H., Ahlquist, J., Ahman, K., and Suomalainen, H., 1967, Repeated alcoholic intoxication compared with continued consumption of dilute ethanol in experiments with rats on a marginal diet, Br. J. Nutr. 21:643.

    Google Scholar 

  • Wartburg, J. P., and Rötlischberger, M., 1961, Enzymatische Veränderungen in der Leber nach langdauernder Belastung mit Aethanol und Methanol bei der Ratte, Helv. Physiol. Acta 19:30.

    Google Scholar 

  • Wendell, G. D., and Thurman, R. G., 1979, Effect of ethanol concentration on rates of ethanol elimination in normal and alcohol-treated rats in vivo, Biochem. Pharmacol. 28:273.

    Google Scholar 

  • Wood, J. M., and Laverty, R., 1979, Metabolic and pharmacodynamic tolerance to ethanol in rats, Pharmacol., Biochem. Behav. 10:871.

    Google Scholar 

  • Wyatt, R. J., Erdelyi, E., DoAmaral, J. R., Elliott, G. R., Renson, J., and Barchas, J. D., 1975, Tryptoline formation by a preparation from brain with 5-methyltetrahydrofolic acid and tryptamine, Science 187:853–55.

    Google Scholar 

  • Yuki, T., and Thurman, R. G., 1980, The swift increase in alcohol metabolism: Time course for the increase in hepatic oxygen uptake and the involvement of glycolysis, Biochem. J. 186:119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Eriksson, C.J.P., Deitrich, R.A. (1983). Metabolic Mechanisms in Tolerance and Physical Dependence on Alcohol. In: Kissin, B., Begleiter, H. (eds) The Biology of Alcoholism. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3518-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3518-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3520-7

  • Online ISBN: 978-1-4613-3518-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics