Advertisement

Some New Integrable Models in Field Theory and Statistical Mechanics

  • Héctor de Vega
Part of the NATO Advanced Study Institutes Series book series (volume 82)

Abstract

The triangular relations [l–3] (also called factorization equations or Yang-Baxter equations)
are the clue of the resolution of two-dimensional interable models in quantum field theory and statistical mechanics[3,4,5]. In (1) the indices run from one to N, S kl ij are N4 functions (in general complex) of the variable O. The physical interpretation of the S kl ij depends on the context where they are considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C.N. YANG, Phys. Rev. Lett. 1312 (1967)ADSCrossRefGoogle Scholar
  2. [2]
    R.J. BAXTER, Ann. Phys. 70 173 and 323 (1972)ADSGoogle Scholar
  3. [3]
    A.B. ZAMOLODCHIKOV and AI. B. ZAMOLODCHIKOV, Ann. Phys. 80, 253 (1979)MathSciNetADSGoogle Scholar
  4. M. KAROWSKI, Phys. Reports 49C, 229 (1979)ADSCrossRefGoogle Scholar
  5. [4]
    L.D. FADDEEV, lectures in this summer schoolGoogle Scholar
  6. L.D. FADDEEV, Soviet Scientific Reviews (section C) 1 107 (1980)MATHGoogle Scholar
  7. [5]
    P.P. KULISH and E.K. SKLIANIN, Tvärminne lectures. J. Hietarinta and C. Montonen eds. Springer VerlagGoogle Scholar
  8. P.P. KULISH and E.K. SKLIANIN, Zapisky Nauchny Seminarov LOMI 95, 129 (1980).Google Scholar
  9. [6]
    R.J. BAXTER, Fundamental Problems in Statistical Mechanics, Vol. V p. 109. E.G.O. Cohen editor (1980)Google Scholar
  10. [7]
    Yu. G. STROGANOV, Phys. Lett. 74A, 116 (1979)MathSciNetADSGoogle Scholar
  11. A.B. ZAMOLODCHIKOV, Comm. Math. Phys. 69, 165 (1979)MathSciNetADSCrossRefGoogle Scholar
  12. [8]
    R. SHANKAR, Yale preprint, YTP-81–21, 1981Google Scholar
  13. [9]
    A.V. MIKHAILOV, ZhETF Pis 30, 443 (1979); JETP Lett. 30, 414 (1980.Google Scholar
  14. A.N. LEZNOV and M.V. SAVELIEV, Lett. Mat. Phys. 3, 489 (1979).MathSciNetADSMATHCrossRefGoogle Scholar
  15. S.A. BULGADAEV, Phys. Lett. 96B, 151 (1980)MathSciNetADSGoogle Scholar
  16. [10]
    O. BABELON, H.J. DE VEGA and C.M. VIALLET, Nucl. Phys. B (FS), B190, 542 (1981).ADSCrossRefGoogle Scholar
  17. [11]
    E.K. SKLIANIN, L.A. TAKHTADZHYAN and L.D. FADDEEV, Teor. Mat. Fiz. 40, 194 (1979); Theor. Math. Phys. 4D, 688 (1980)Google Scholar
  18. [12]
    O.BABELON, H.J. DE VEGA ANH C. M. VIALLET, Paris Preprint, LPTHE 81/09, nucl. Phys. B (FS) (to be published).Google Scholar
  19. [13]
    See for example E.A. Lieb and F.Y. Wu in Phase Transitions and Critical Phenomena, vol. 1; Ed. by C. Domb and M.S. Green 1972.Google Scholar
  20. [14]
    B.SUTHERLAND, phys. Rev. B12, 3795 (1975)ADSGoogle Scholar
  21. P.P KULISH AND N.Yu. RESHETIKHIN, ZhETF 80, 214 (1981)MathSciNetGoogle Scholar
  22. [15]
    O.BABELON, H.J. de VEGA AND C.M. VIALLET (in preparation)Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Héctor de Vega
    • 1
  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations