Radiative Symmetry Breaking in Grand Unified Theories

  • Norbert Dragon
  • Berthold Stech
Part of the NATO Advanced Study Institutes Series book series (volume 82)


Motivated by composite models, we start from 0(n)-invariant tree potentials for the scalar fields of unified theories and calculate the dynamical symmetry breaking caused by radiative effects. A phenomenologically interesting variety of breaking patterns is obtained. In reducible representations of the scalar fields only the field with the largest Casimir number obtains vacuum expectation values. Right-left symmetric models experience a spontaneous parity breakdown for a range of values of the coupling parameter.


Scalar Field Coupling Parameter Stability Group Grand Unify Theory Reducible Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review on composite particle models and the literature see H. Harari, Proceedings of the Summer Institute on Particle Physics, July 28 - August 8, 1980, SLAC Report No. 239, p. 162 (1981).Google Scholar
  2. Y. Achiman, Wuppertal preprint WU B81–13 (1981).Google Scholar
  3. 2.
    S. Coleman and E. Weinberg, Phys. Rev. D7, 1888 (1973).ADSGoogle Scholar
  4. S. Weinberg, Phys. Rev. D7, 2887 (1973).ADSGoogle Scholar
  5. 3.
    For a recent review of grand unified theories see J. Ellis, CERN Th 29b2 (1980).Google Scholar
  6. 4.
    B. Stech, in “Unification of Fundamental Particle Interactions”, Ed.: S. Ferrara, J. Ellis, P. van Nieuvenhuizen, Plenum Press, New York 1980, p. 23.CrossRefGoogle Scholar
  7. 5.
    R. Barbieri and D. V. Nanopoulos, Phys. Lett. 91B, 369 (1980).ADSGoogle Scholar
  8. 6.
    S. Raby, S. Dimopoulos, and L. Susskind, Stanford preprint ITP-653 (1979).Google Scholar
  9. 7.
    W. G. McKay and J. Partera, Lecture notes in pure and applied mathematics V 69, Tables of dimensions, indices, and branching rules for representations of simple Lie algebras, Marcell Dekker Inc., New York 1981.Google Scholar
  10. 8.
    H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, U38 (1970).Google Scholar
  11. A. J. Buras, J. Ellis, M. K. Gaillard, and D. V. Nanopoulos, Nucl. Phys. B135, 66 (1978).ADSCrossRefGoogle Scholar
  12. 9.
    H. Fritzsch and P. Minkowski, Ann. Phys. 93, 193 (1975).MathSciNetADSCrossRefGoogle Scholar
  13. H. Georgi and D. V. Nanopoulos, Nucl. Phys. B155., 52 (1979).ADSCrossRefGoogle Scholar
  14. M. Gell-Mann, P. Ramond, and R. Slansky, unpublished.Google Scholar
  15. 11.
    F. Gürsey, P. Ramond, and P. Sikivie, Phys. Lett. 60B, 177 (1975).Google Scholar
  16. Y. Achiman and B. Stech, Phys. Lett. 77B, 389 (1978).ADSGoogle Scholar
  17. For a review of E6 models and further literature see ref. U.Google Scholar
  18. 12.
    J. Harvey, Nucl. Phys. B163, 254 (1980).MathSciNetADSCrossRefGoogle Scholar
  19. P. H. Frampton and T. W. Kephart, North Carolina preprint IFP 164-UNC.Google Scholar
  20. 14.
    J. Ellis, M. K. Gaillard, D. V. Nanopoulos, C. T. Sachrajda, Phys. Lett. 83B, 339 (1979).ADSGoogle Scholar
  21. 15.
    For a review on axions see R. D. Peccei, Munich preprint MPI-PAE/PTh U5/81.Google Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Norbert Dragon
    • 1
  • Berthold Stech
    • 1
  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations