Advertisement

Relation between the Structure of Wool Graft Copolymers and their Dynamical Mechanical Properties

  • Kozo Arai
Part of the Polymer Science and Technology book series (volume 17)

Abstract

Wool fibers contain two types of cells, viz. cuticle cells and cortical cells. The cuticle cells consist of external epicuticle, exocuticle, and endocuticle. The cortical cells are divided into two different types of cells termed as orthocortical and paracortical cells which occupy about 90% of the wool fibers. They are separated from one another by a cell membrane complex with three layer structure. The cortex structure is constituted from the crystalline microfibril of the α-helical aggregate embedded in a matrix of high sulfur content. Wool fiber is thus a composite material with a variety of function on mechanical, chemical, and physical properties.

Keywords

Loss Modulus Methyl Acrylate Wool Fiber Wool Material Ethyl Acrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Arai, M. Negishi, T. Suda, S. Arai, J. Appi. Polym. Sci., 17, 483 (1973).CrossRefGoogle Scholar
  2. 2.
    K. Arai, in “Block and Graft Copolymerization” Vol. 1 ( R. J. Ceresa, Ed.), Wiley-Interscience, London-New York, 1973, Chpt. 8Google Scholar
  3. 3.
    K. Arai, K. Hagiwara, Int. J. Biol. Macromol., 2, 355 (1980)CrossRefGoogle Scholar
  4. 4.
    K. Arai, S. Arai, Int. J. Biol. Macromol., 2, 361 (1980).MathSciNetCrossRefGoogle Scholar
  5. 5.
    K. Arai, M. Negishi, J. Polym. Sci. A-l, 9, 1865 (1971).Google Scholar
  6. 6.
    K. Arai, S. Komine, M. Negishi, J. Polym. Sci. A-l, 8, 917 (1970).Google Scholar
  7. 7.
    K. Arai, M. Negishi, S. Komine, K. Takeda, Appi. Polym. Symp. No. 18, Vol. I, 545 (1971).Google Scholar
  8. 8.
    K. Arai, in “Block and Graft Copolymerization” Vol. 1 ( R. J. Ceresa, Ed.), Wiley-Interscience, London-New York, 1973, Chpt. 7Google Scholar
  9. 9.
    K. Arai, Polymer, 18, 211 (1977).CrossRefGoogle Scholar
  10. 10.
    K. Arai, H. Tabei, Proc. Int. Wool Text. Res. Conf., Aachen, III, 416 (1975).Google Scholar
  11. 11.
    K. Arai, H. Tanabe, Polymer, 18, 220 (1977).CrossRefGoogle Scholar
  12. 12.
    F. H. Mercer, J. Text. Inst., 40, T629 (1949).CrossRefGoogle Scholar
  13. 13.
    M. W. Andrews, R. L. D’Arcy, I. C. Watt, J. Polym. Sci. B, 3, 441 (1965).CrossRefGoogle Scholar
  14. 14.
    M. W. Andrews, J. Roy. Microscop. Sci., 84, 439 (1965).Google Scholar
  15. 15.
    P. Ingram, J. L. Williams, V. Stannett, M. W. Andrews, J. Polym. Sci. A-l, 6, 1895 (1968).Google Scholar
  16. 16.
    J. Sikorski, W. S. Simpson, Nature, 182, 1235 (1958).ADSCrossRefGoogle Scholar
  17. 17.
    G. E. Rogers, Ann. N. Y. Acad. Sci., 83, 408 (1959).ADSCrossRefGoogle Scholar
  18. 18.
    J. A. Swift, J. Roy. Microscop. Soc., 88, 449 (1968).Google Scholar
  19. 19.
    J. H. Brudbury, K. F. Ley, Aust. J. Biol. Sci., 25, 1232 (1972).Google Scholar
  20. 20.
    J. A. Swift, A. W. Holmes, Text. Res. J., 35, 1014 (1965).CrossRefGoogle Scholar
  21. 21.
    R. D. B. Fraser, T. P. MacRae, G. R. Millward, D. A. D. Parry, E. Suzuki, P. A. Tulloch, Appi. Polym. Symp., No. 18, Vol. I, 65 (1971).Google Scholar
  22. 22.
    Y. Nakamura, T. Kanoh, T. Kondo, H. Inagaki, Proc. Int. Wool Text. Res. Conf., Aachen, II, 23 (1975).Google Scholar
  23. 23.
    D. F. G. Orwin, R. W. Thompson, Proc. Int. Wool Text. Res. Conf., Aachen, II, 173 (1975).Google Scholar
  24. 24.
    K. Arai, M. Negishi, T. Suda, K. Doi, J. Polym. Sci. A-l, 9, 1879 (1971).Google Scholar
  25. 25.
    J. S. Crighton, P. N. Hole, Proc. Int. Wool Text. Res. Conf., Aachen, II, 499 (1975).Google Scholar
  26. 26.
    A. Konda, M. Tsukada, S. Kuroda, J. Polym. Sci. B, 11, 247, (1973).Google Scholar
  27. 27.
    A. Robson, M. J. Williams, J. M. Woodhouse, J. Text. Inst., 60, T140 (1969).CrossRefGoogle Scholar
  28. 28.
    E. G. Bendit, Text. Res. J., 38, 15 (1968).CrossRefGoogle Scholar
  29. 29.
    J. H. Bradbury, in “Advanced in Protein Chemistry” Vol. 27 ( C. B. Anfinsen, J. T. Edsall and F. M. Richards, Eds.), Academic Press, New York-London, 1973.Google Scholar
  30. 30.
    T. C. Elleman, H. Lindley, R. J. Rowlands, Nature, 246, 530 (1973).ADSCrossRefGoogle Scholar
  31. 31.
    L. S. Swart, Nature (New Biol.) 243, 27 (1973).CrossRefGoogle Scholar
  32. 32.
    D. A. D. Parry, R. D. B. Fraser, T. P. MacRae, Int. J. Biol. Macromol., 1, 17 (1979).CrossRefGoogle Scholar
  33. 33.
    C. M. Venkatchalam, Biopolymers, 6, 1425 (1968).CrossRefGoogle Scholar
  34. 34.
    P. N. Lewis, F. A. Momany, H. A. Scheraga, Proc. Nat. Acad. Sci. USA, 68, 2293 (1971).ADSCrossRefGoogle Scholar
  35. 35.
    T. G. Fox, Jr., P. J. Flory, J. Appl. Phys., 21, 581 (1950).ADSCrossRefGoogle Scholar
  36. 36.
    S. Rogers, L. Mandelkern, J. Phys. Chem., 61, 985 (1957).CrossRefGoogle Scholar
  37. 37.
    R. F. Boyer, R. S. Spencer, J. Appl. Phys., 15, 398 (1944).ADSCrossRefGoogle Scholar
  38. 38.
    R. Simha, R. F. Boyer, J. Chem. Phys., 37 1003 (1962).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Kozo Arai
    • 1
  1. 1.Department of Chemistry, Faculty of TechnologyGunma UniversityKiryu, GunmaJapan

Personalised recommendations