Skip to main content

Atomistic Mechanisms of Intergranular Embrittlement

  • Chapter

Abstract

Since the composition at grain boundaries generally differs considerably from that in the grain interior, all considerations of intergranular fracture must take this into account. In this survey we consider the historical development of the theories of low temperature intergranular fracture with particular reference to temper brittleness. The theory is followed through Rice and Thompson’ s analysis of the energy balance between ductility and brittle fracture with Rice’s analysis of the effects of segregant on the ideal work of fracture term. As developed by Mason, Hirth and Rice, and Seah the atomistic term involved in this process is the bond energy of the individual atoms across the fracture plane These terms can be calculated simply, to a first approximation, from tabulated thermodynamic data.

Other important forms of low temperature intergranular brittleness, hydrogen embrittlement, liquid metal embrittlement and intergranular stress corrosion cracking are also affected by grain boundary segregation. In hydrogen embrittlement and liquid metal embrittlement, the segregant-environment atom bonding is important whereas in intergranular stress corrosion cracking the emphasis is placed on the electrochemical potential of the s e gre gant atoms.

The high temperature intergranular failures in stress relief annealing and creep embrittlement are similarly affected by segregants but here the terms involve the effects on surface energy and grain boundary diffusivity. Each intergranular fracture phenomenon involves a different atomic parameter and hence a different hierarchy of segregants is observed in each case. Recognition of this is important and should be built into future specification codes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J H Westbrook, Phil Trans R Soc Lond A 295: 25 (1980).

    Article  ADS  Google Scholar 

  2. W C Roberts-Austen, Phil Trans R Soc Lond A 179: 339 (1888).

    Article  ADS  Google Scholar 

  3. MP Seah, Acta Met 28: 955 (1980).

    Article  Google Scholar 

  4. D McLean, Grain Boundaries in Metals, Oxford University Press, (1957).

    Google Scholar 

  5. C J McMahon, Temper Embrittlement in Steel ASTM STP 407: 127 (1968).

    Google Scholar 

  6. MP Seah, Surface Sci 53: 168 (1975).

    Article  ADS  Google Scholar 

  7. C L Briant and S K Banerji, Int Met Revs 23: 164 (1978).

    Google Scholar 

  8. P E Irving, M P Seah and A Kurzfeld, Proc 2nd Int Conf on Mech Behav of Materials, Boston, ASM p563 (1976).

    Google Scholar 

  9. S K Banerji, C J McMahon and H C Feng, Met Trans 9A: 237 (1978).

    Google Scholar 

  10. C Lea, Met Sci 14: 107 (1980).

    Article  Google Scholar 

  11. ED Hondros and C Lea, Nature 289: 663 (1981).

    Article  ADS  Google Scholar 

  12. M G Nicholas and C F Old, J Mat Sci 14: 1 (1979).

    Article  ADS  Google Scholar 

  13. D A Melford, Phil Trans R Soc Lond A 295: 89 (1980).

    Article  ADS  Google Scholar 

  14. C Lea, R Sawle and C M Sellars, Phil Trans R Soc Lond A 295: 121 (1980).

    Article  ADS  Google Scholar 

  15. B L King, Phil Trans R Soc Lond A 295: 235 (1980).

    Article  ADS  Google Scholar 

  16. H R Tipler, Phil Trans R Soc Lond A 295: 213 (1980).

    Article  ADS  Google Scholar 

  17. M P Seah, Phil Trans R Soc Lond A 295: 265 (1980).

    Article  ADS  Google Scholar 

  18. M P Seah, P J Spencer and E D Hondros, Met Sci 13: 307 (1979).

    Article  Google Scholar 

  19. C J Middleton, Phil Trans R Soc Lond A 295: 305 (1980).

    Article  ADS  Google Scholar 

  20. A A Griffith, Phil Trans R Soc Lond A 221: 163 (1920).

    ADS  Google Scholar 

  21. M Polanyi, Z Phys 7: 323 (1921).

    Article  ADS  Google Scholar 

  22. E A Guggenheim, Modern Thermodynamics, London p25 (1933).

    Google Scholar 

  23. E D Hondros and M P Seah, Met Trans 8A: 1363 (1977).

    Article  Google Scholar 

  24. E D Hondros, Proc Roy Soc A 286: 479 (1965)

    Article  ADS  Google Scholar 

  25. ED Hondros, Proc Melbourne Conf on Interfaces, Ed R C Gifkins, Butterworths p 77 (1969).

    Google Scholar 

  26. ED Hondros and D McLean, Monograph No 28, Society of Chemical Industry: London p39 (1968).

    Google Scholar 

  27. M P Seah and C Lea, Phil Mag 31: 627 (1975).

    Article  ADS  Google Scholar 

  28. M P Seah, Acta Met 25: 345 (1977).

    Article  Google Scholar 

  29. M P Seah, J Vac Sci Technol 17: 16 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  30. E D Hondros and M P Seah, Int Met Revs 22: 262 (1977).

    Google Scholar 

  31. E D Hondros and D McLean, Phil Mag 29: 771 (1974).

    Article  ADS  Google Scholar 

  32. A Kelly, W R Tyson and A H Cottrell, Phil Mag 15: 567 (1967)

    Article  ADS  Google Scholar 

  33. E Smith and J T Barnby, Met Sci J 1: 56 (196?).

    Google Scholar 

  34. J R Rice and R Thompson, Phil Mag 29: 73 (1974).

    Article  ADS  Google Scholar 

  35. D D Mason, Phil Mag A 39: 455 (1979).

    Article  ADS  Google Scholar 

  36. M P Seah, Proc R Soc Lond A 349: 535 (1976).

    Article  ADS  Google Scholar 

  37. MP Seah, Surface Sci 53: 168 (1975).

    Article  ADS  Google Scholar 

  38. J R Rice, Effect of Hydrogen on Behaviour of Materials, Ed A W Thompson and I M Bernstein, Met Soc AIME p455 (1976).

    Google Scholar 

  39. R J Asaro, Phil Trans R Soc Lond A 295: 150 (1980).

    ADS  Google Scholar 

  40. J P Hirth, Phil Trans R Soc Lond A 295: 139 (1980). hi.

    Google Scholar 

  41. J P Hirth and J R Rice, Met Trans 11A: 1501 (1980).

    Article  Google Scholar 

  42. D D Mason, Segregation Induced Embrittlenient of Grain Interfaces, ScM Thesis, Brown University, May (1977).

    Google Scholar 

  43. M P Seah, J Catal 57: U50 (1979).

    Article  Google Scholar 

  44. R Hultgren, P A Desai, D T Hawkins, M Gleiser and K K Kelly, selected Values of the Thermodynamic Properties of Elements, and Selected Values of the Thermodynamic Properties of Binary Alloys, ASM, Metals Park (1973).

    Google Scholar 

  45. O Kubaschewski and C B Alcock, Metallurgical Thermochemistry, 5th Edn Pergamon, Oxford (1979).

    Google Scholar 

  46. Ph Dumoulin, M Guttmann, M Foucoult, M Palmier, M Wayman and M Biscondi, Met Sci 14 (1980).

    Google Scholar 

  47. M P Seah, Scripta Met, 15: to be published.

    Google Scholar 

  48. B D Powell and H Mykura, Acta Met 21: 1151 (1973).

    Article  Google Scholar 

  49. ARC Westwood and R M Latanision, NBS Special Pub 348: 141 (1972).

    Google Scholar 

  50. C J McMahon and V Vitek, Acta Met 27: 507 (1979).

    Article  Google Scholar 

  51. D S Tomalin and C J McMahon, Acta Met 21: 1189 (1973).

    Article  Google Scholar 

  52. ML Jokl, J Kameda, C J McMahon and V Vitek, Met Sci 14: 375 (1980).

    Google Scholar 

  53. M L Jokl, V Vitek and C J McMahon, Acta Met 28: 1479 (1980).

    Article  Google Scholar 

  54. M P Seah, J Phys F 10: 1043 (1980).

    Article  ADS  Google Scholar 

  55. M Guttmann, Phil Trans R Soc Lond A 295: 169 O980).

    Google Scholar 

  56. E S Machlin, Scrip Met 12: 111 (1978).

    Article  Google Scholar 

  57. W G Hartweck, Scrip Met, 15: to be published.

    Google Scholar 

  58. A M Donald and L M Brown, Acta Met 27: 59 (1979).

    Article  Google Scholar 

  59. D J Dingley and S Biggin, Phil Trans R Soc Lond A 295: 165 (1980).

    Article  ADS  Google Scholar 

  60. R C Pond, D A Smith and R H Wagoner, In Fracture 1977, Vol 2, p155, ICFU, Waterloo, Canada (1977).

    Google Scholar 

  61. R M Latanision and H Opperhauser, Met Trans 5: 483 (1974)

    Article  Google Scholar 

  62. M Smialowski, Hydrogen in Steel, Pergamon, London (1962).

    Google Scholar 

  63. A R Troiano, Trans Am Soc Metals 52: 54 (1959). 6b.

    Google Scholar 

  64. N J Petch and P Stables, Nature 169: 8U2 (1952).

    Google Scholar 

  65. M G Nicholas and C F Old, J Mat Sci 14 (1979).

    Google Scholar 

  66. M H Kamdar, In Fracture 1977, Vol 1, p387 ICFU, Waterloo, Canada (1977).

    Google Scholar 

  67. M J Kelley and N S Stoloff, Met Trans 6A: 159 (1975).

    Google Scholar 

  68. L P Costas, Corrosion, 31: 91 (1975).

    Google Scholar 

  69. S Dinda and W R Warke, Mat Sci Eng 24: 199 (1976).

    Article  Google Scholar 

  70. U Q Cabral, A Mache and A Constant, C R Acad Sci 260: 6887 (1965).

    Google Scholar 

  71. R P Harrison, D G de Jones and J F Newman, Proc Int Conf on Stress Corrosion Cracking and Hydrogen Embrittlenient of Iron-Based Alloys, Firminy, France, June 1973, NACE, Houston (1977).

    Google Scholar 

  72. C Lea and E D Hondros, Proc Roy Soc Lond A, to be published.

    Google Scholar 

  73. R Bruscato, Weld J Res Suppl 49: 148S (1970).

    Google Scholar 

  74. D Hull and D E Rimmer, Phil Mag 4: 673 (1959).

    Article  ADS  Google Scholar 

  75. R Raj and M J Ashby, Acta Met 23: 653 (1975).

    Article  Google Scholar 

  76. M V Speight and W Beere, Met Sci 9: 190 (1975).

    Article  Google Scholar 

  77. R P Skelton, Met Sci 9: 192 (1975).

    Article  Google Scholar 

  78. H R Tipler and D McLean, Met Sci J 4: 103 (1970).

    Google Scholar 

  79. R C Miller and A D Batte, Met Constr 7: 550 (1975).

    Google Scholar 

  80. V T Borisov, V M Golikov and G V Scherbedinskiy, Phys Met Metallog 17: 80 (1964).

    Google Scholar 

  81. J Bernardini, P Gas, E D Hondros and M P Seah, Proc Roy Soc Lond A: to be published.

    Google Scholar 

  82. A D LeClaire, Thin Solid Films 25: 1 (1975).

    Article  ADS  Google Scholar 

  83. British Steelmakers Creep Committee High Temperature Data, Iron Steel Inst Spec Pub 156: 257 (1973).

    Google Scholar 

  84. M P Seah, P J Spencer and E D Hondros, Met Sci 13: 307 (1979).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Seah, M.P., Hondros, E.D. (1983). Atomistic Mechanisms of Intergranular Embrittlement. In: Latanision, R.M., Pickens, J.R. (eds) Atomistics of Fracture. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3500-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3500-9_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3502-3

  • Online ISBN: 978-1-4613-3500-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics