Skip to main content

Computer Modeling of Cracks

  • Chapter
Atomistics of Fracture

Abstract

The theoretical techniques used in modeling cracks in crystalline lattices are reviewed. It is shown that there is generally a trade-off between sample size and realistic interatomic potentials. Infinite discrete one and two-dimensional lattices can be handled by the methods of lattice statics, but only with simple unrealistic potentials. In the hybrid lattice statics models a very small crystalline region, where the calculations are done with realistic potentials, is imbedded in an infinite elastic continuum. In this approach the boundary matching between the two regions is the difficulty. At the other end of the scale, molecular dynamic techniques can be used on an unconstrained system of a “large” number of atoms interacting with a reasonably realistic interatomic potential (this is the only way dynamic simulations have been done so far). Here, of course, the question is how “large” is large enough to simulate the behavior of the corresponding infinite system.

This work was supported in part by U.S. Army Research Office, and in part by the U.S. Department of Energy under Contract N0. DE-AC02-76CH00016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. M. Thomson - this conference.

    Google Scholar 

  2. B. R. Lawn and T. R. Wilshaw, “Fracture of Brittle Solids” Cambridge University Press, Cambridge (1975).

    Google Scholar 

  3. E. R. Fuller, Jr. and R. M. Thomson in “Fracture Mechanics of Ceramics” R. C. Broadt, D. P. H. Hasselman and F. F. Lange, ed., Vol. 4, Plenum, New York (1978) pp. 507–548.

    Google Scholar 

  4. D. M. Esterling, Comments Solid State Phys. 9: 105 (1979).

    Google Scholar 

  5. J. E. Sinclair and B. R. Lawn, Proc. Roy. Soc. Lond. A329: 83 (1972).

    Article  ADS  Google Scholar 

  6. P. C. Gehlen, Scripta Met. 7: 1115 (1973).

    Article  Google Scholar 

  7. J. E. Sinclair, Phil. Mag. 31: 647 (1975).

    Article  ADS  Google Scholar 

  8. J. H. Weiner and W. Pear, J. Appl. Phys. 46: 2398 (1975).

    Article  ADS  Google Scholar 

  9. W. T. Ashurst and W. G. Hoover, Phys. Rev. B14: 1465 (1976).

    Article  ADS  Google Scholar 

  10. M. F. Kannimen and P. C. Gehlen in “Interatomic Potentials and Simulation of Lattice Defects” P. C. Gehlen et al., ed., Plenum, New York (1972) pp. 713–722.

    Google Scholar 

  11. A. Paskin, A. Gohar and G. J. Dienes, Phys. Rev. Lett. 44: 940 (1980).

    Article  ADS  Google Scholar 

  12. A. Paskin, D. K. Som and G. J. Dienes, J. Phys. C 14: L171 (1981).

    Article  ADS  Google Scholar 

  13. R. M. Thomson, C. Hsieh and V. Rana, J. Appl. Phys. 42: 3154 (1971).

    Article  ADS  Google Scholar 

  14. C. Hsieh and R. M. Thomson, J. Appl. Phys. 44: 2051 (1973).

    Article  ADS  Google Scholar 

  15. D. M. Esterling, J. Appl. Phys. 47: 486 (1976).

    Article  ADS  Google Scholar 

  16. A. A. Griffith, Phil. Trans. R. Soc. A221–163 (1920).

    Google Scholar 

  17. See, for example, “Computer Simulation for Materials Applications” R. J. Arsenault, J. R. Beeler, Jr. and J. A. Simmons, eds., Nuclear Metallurgy, Vol. 20 (1976).

    Google Scholar 

  18. L. Verlet, Phys. Rev. 159–98 (1967).

    Google Scholar 

  19. Per-Ole Esbjorn and E. J. Jensen, J. Phys, Chem. Solids 37: 1081 (1976).

    Article  ADS  Google Scholar 

  20. J. P. Berry, J. Mech. Phys. Solids 9: 105 (1960).

    Google Scholar 

  21. D. O. Welch, G. J. Dienes and A. Paskin, J. Phys, Chem. Solids 39: 589 (1978).

    Article  ADS  Google Scholar 

  22. J. R. Rice and Robb Thomson, Philos. Mag. 29: 73 (1974).

    Article  ADS  Google Scholar 

  23. D. K. Som, A, Paskin and G. J. Dienes, to be published. This section is part of a thesis by Dilip K. Som.

    Google Scholar 

  24. N. F. Mott, Engineering 165: 16 (1948).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Dienes, G.J., Paskin, A. (1983). Computer Modeling of Cracks. In: Latanision, R.M., Pickens, J.R. (eds) Atomistics of Fracture. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3500-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3500-9_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3502-3

  • Online ISBN: 978-1-4613-3500-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics