Advertisement

Hydrogen Adsorption on Metal Surfaces

  • Klaus Christmann

Abstract

For a variety of reasons, the interaction of gaseous hydrogen with solid surfaces of metals and semiconductors has found widespread interest in the past, and countless experimental and theoretical investigations have been performed in this field. The term ‘interaction’ primarily focuses on the adsorption of the hydrogen molecule on the metal surface, but in principle it also includes a possible penetration of the hydrogen into the bulk crystal as well as a reaction with the bulk material to form the respective metal hydride. Both these interaction phenomena play a major role in practical chemistry and physics: The hydrogen adsorption step is considered a central reaction in heterogeneously catalyzed hydrogeration reactions. In forming an adsorptive bond to the metal certain other bonds of an adsorbed molecule may become weakened or even cleaved, and new species are easily formed by the subsequent surface reaction which normally is of a Langmuir-Hinshelwood type, i.,e., both partners react from the adsorbed state. The desired (gaseous) products leave the surface by thermal desorption under the reaction conditions and can be separated from the reaction mixture.

Keywords

Metal Surface Thermal Desorption Hydrogen Molecule Hydrogen Adsorption Potential Energy Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. E. Lennard-Jones, Transact. Faraday Soc.28, 28 (1932)CrossRefGoogle Scholar
  2. [2]
    K. Christmann, R.J. Behm, G. Ertl, M. A., van Hove and W.H.Weinberg, J. Chem. Phys. 70, 4168 (1979)CrossRefADSGoogle Scholar
  3. [3]
    T.B.Grimley and M.Torrini, J.Phys. C6, 868 (1973); T.L. Einstein and J.R.Schrieffer, Phys.Rev. B7, 3629 (1973)ADSGoogle Scholar
  4. [4]
    P.A.Redhead, Vacuum 12, 203 (1962); D.A.King, Surf. Sei. 47, 384 (1975)CrossRefGoogle Scholar
  5. [5]
    K.Christmann, Z.Naturforsch. 34a, 22 (1979)ADSGoogle Scholar
  6. [6]
    G.A.Goyden, in “Dissociation energies and spectra of diatomic molecules”, Chapman and Hall, London 1968Google Scholar
  7. [7]
    F.Bozso, G.Ertl, M.Grunze and M.Weiβ, Appl. Surf. Sci. 1, 103 (1977)CrossRefGoogle Scholar
  8. [8]
    K.Christmann, O.Schober, G.Ertl and M.Neumann, J.Chem. Phys. 60, 4528 (1974)CrossRefADSGoogle Scholar
  9. [9]
    C.S.Alexander and J.Pritchard, J.Chem.Soc. Faraday Transact. I68, 202 (1972)CrossRefGoogle Scholar
  10. [10]
    R.J.Behm, K.Christmann and G.Ertl, Surf.Sci. 99, 320 (1980)CrossRefADSGoogle Scholar
  11. [11]
    B.M.W.Trapnell and D.O.Hayward in “Chemisorption”, Butterworth, London 1964Google Scholar
  12. [12]
    K.Christmann, G.Ertl and T.Pignet, Surf. Sci. 54, 365 (1976)CrossRefADSGoogle Scholar
  13. [13]
    K.Y.Yu, D.T.Ling and W.E.Spicer, J.Catal. 44, 373 (1976)CrossRefGoogle Scholar
  14. [14]
    K.Christmann, Bull.Soc.Chim.Belg. 88, 519 (1979)CrossRefGoogle Scholar
  15. [15]
    K.Christmann and G.Ertl, Surf.Sci. 60, 365 (1976)CrossRefADSGoogle Scholar
  16. [16]
    R.J.Gale, M.Salmeron and G. A. Somorjai, Phys. Rev. Lett. 38, 1027 (1977)CrossRefADSGoogle Scholar
  17. [17]
    S.L.Bernasek and G.A.Somorjai, J.Chem.Phys. 62, 3149 (1975)CrossRefADSGoogle Scholar
  18. [18]
    K.Christmann, Habilitationsschrift, Universität München 1978Google Scholar
  19. [19]
    M. A., van Hove, G.Ertl, K.Christmann, R.J.Behm and W.H.Weinberg, Solid State Commun. 28, 373 (1978)CrossRefGoogle Scholar
  20. [20]
    R. Imbihl, K. Christmann, R.J.Behm and G.Ertl, to be publishedGoogle Scholar
  21. [21]
    E.Ising, J.Phys. 31, 253 (1925)ADSGoogle Scholar
  22. [22]
    L.Onsager, Phys.Rev. 65, 117 (1944)CrossRefMATHADSMathSciNetGoogle Scholar
  23. [23]
    T.L.Hill, in “Introduction to statistical mechanics”; Addison-Wesley, New York 1964Google Scholar
  24. [24]
    G.Doyen, G.Ertl and M. Plancher, J.Chem.Phys. 62, 2957 (1975)CrossRefADSGoogle Scholar
  25. [25]
    T.L.Einstein, Surf.Sci. 84, L497 (1979)CrossRefADSGoogle Scholar
  26. [26]
    E. Domany, M. Schick and J.S. Walker, Solid State Commun. 30, 331 (1979)CrossRefADSGoogle Scholar
  27. [27]
    A.M.Baro, H.Ibach and H.D.Bruchmann, Surf.Sci. 88, 384 (1979)CrossRefADSGoogle Scholar
  28. [28]
    M. A., van Hove, in “The Nature of the Surface Chemical Bond”, T.N.Rhodin and G.Ertl edts., North Holland Amsterdam 1979Google Scholar
  29. [29]
    S.C.Ying, J.R.Smith and W.Kohn, Phys.Rev. B 11, 1483 (1975)CrossRefADSGoogle Scholar
  30. [30]
    J.W.May, Advanc.Catal.Rel.Subj. 21, 219 (1970)Google Scholar
  31. [31]
    H.Conrad, G.Ertl and E.E.Latta, J.Catal. 35, 363 (1974)CrossRefGoogle Scholar
  32. [32]
    R. Imbihl, Diplomarbeit, Universität MUnchen 1980Google Scholar
  33. [33]
    J.C.Bertolini and G.M. Dalmai-Imelik, Coll. Intern. CNRS, Paris 1969, pg. 135Google Scholar
  34. [34]
    P.J.Estrup and J.Anderson, J.Chem.Phys. 45, 2254 (1966)CrossRefADSGoogle Scholar
  35. [35]
    M.W.Roberts and C.S.McKee, “Chemistry of the Metal-Gas Interface”, Clarendon Press, Oxford 1978, pg. 396Google Scholar
  36. [36]
    J.B.Pendry, “Low energy electron diffraction”, Academic Press, New York 1974Google Scholar
  37. [37]
    H.Ibach and H.D.Bruchmann, Phys.Rev.Lett. 44, 36 (1980)CrossRefADSGoogle Scholar
  38. [38]
    K.H.Rieder and T.Engel, Phys.Rev.Lett. 43, 373 (1979)CrossRefADSGoogle Scholar
  39. [39]
    T.Engel and K.H.Rieder, Phys.Rev.Lett. 45, 824 (1980)CrossRefADSGoogle Scholar
  40. [40]
    A.Heimer, Z.Phys. 105, 56 (1937)CrossRefADSGoogle Scholar
  41. [41]
    T.F.Koetzle, R.K.McMullan, R.Bau, D.W.Hart, R.G.Teller, D.L. Tipton and R.D.Wilson, Adv.Chem. 167, 61 (1978)CrossRefGoogle Scholar
  42. [42]
    W. Blissem and F.Gross, Z.Phys. 87, 778 (1934)CrossRefADSGoogle Scholar
  43. [43]
    see, for example, “Hydrogen in Metals”, edited by I.M.Bernstein and A.W.Thompson, Proceedings of an International Conference on the Effects of Hydrogen on Material Properties and Selection and Structural Design, September 23–27, 1973, Champion, Pennsylvania, American Society for Metals (1974)Google Scholar
  44. [44]
    F.A.Lewis,“The Palladium Hydrogen System”, Academic Press, London, New York 1967, pg. 7Google Scholar
  45. [45]
    H.Kuipers, Diplomarbeit, Universität MUnchen 1977Google Scholar
  46. [46]
    J.A. Davies, D.P. Jackson, P.R. Norton, D.E. Posner and W.N. Unertl, Solid State Commun. 3, 41 (1980)CrossRefGoogle Scholar
  47. [47]
    R.J.Madix, G.Ertl and K.Christmann, Chem. Phys. Lett. 62, 38 (1979)CrossRefADSGoogle Scholar
  48. [48]
    R.Imbihl, R.J.Behm, K.Christmann and G.Ertl, in preparationGoogle Scholar
  49. [49]
    K.Christmann, G.Ertl and O.Schober, Surf.Sci. 40, 61 (1973)CrossRefADSGoogle Scholar
  50. [50]
    C.F.Melius, J.W.Moskowitz, A.P.Mortola, M.B.Baillie and M.A. Ratner, Surf.Sci. 59, 279 (1976)CrossRefADSGoogle Scholar
  51. [51]
    D.M.Newns, Phys.Rev. 178, 1123 (1969)CrossRefADSGoogle Scholar
  52. [52]
    H.Shimizu, K.Christmann and G.Ertl, J.Catal. 61, 412 (1980)CrossRefGoogle Scholar
  53. [53]
    J.H.Sinfelt, Y.L.Lam, J.A.Cusamano and E.A.Barnett, J.Catal. 42, 227 (1976)CrossRefGoogle Scholar
  54. [54]
    W.M.H.Sachtler, Le Vide 164, 67 (1973)Google Scholar
  55. [55]
    H.P.Bonzel, Surf.Sci. 69, 239 (1977)Google Scholar
  56. [56]
    G.Alefeld, in “Festkörperprobleme”(Advances in Solid State Physics), J.Treusch Edr. Vieweg, Braunschweig 1978, pg.53, Vol. XVIIIGoogle Scholar

Copyright information

© Plenum Press, New York 1983

Authors and Affiliations

  • Klaus Christmann
    • 1
  1. 1.Institut für Physikalische ChemieUniversität MünchenMünchen 2Germany

Personalised recommendations