Skip to main content

General Overview: Atomistics of Environmentally-Induced Fracture

  • Chapter
Book cover Atomistics of Fracture

Abstract

That the mechanical behavior of solids is affected by surface and environmental conditions is now well-known and was, in fact, the subject of an earlier NATO Advanced Study Institute on Surface Effects in Crystal Plasticity.1 While the plastics properties (yield strength, work hardening rate, etc.) are sometines substantially affected by the presence of surface films, solvent environments and the like, it is the remarkable effect of environments on the fracture of solids that is of most consequence in a technological sense. Generally the latter interactions are considered to be adverse, and this is often a reputation that is well deserved. Stress corrosion cracking2,3, hydrogen embrittlement 4,, liquid metal embrittlement5,6 and other such failure phenomena take on catastrophic consequences. As engineers, we are of course typically concerned with the prevention and or control of such failures. On the other hand, we should not forget that there are entire industries based upon the fragmentation of solids: materials removal operations such as metal cutting and ceramic machining, grinding, comminution, rapid excavation of hard rock, and others. Is it possible that in these circumstances one might use controlled embrittlement to advantage in order to reduce the work of fracture or fragmentation? While this approach is not typical of current practice in industry, it seems clear that controlled embrittlement is not only feasible but may well prove technologically attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.M. Latanision and J.T. Fourie, eds., “Surface Effects in Crystal Plasticity”, Noordhoff, Leyden (1977).

    Google Scholar 

  2. J.C. Scully, ed., “Theory of Stress Corrosion Cracking”, NATO Scientific Affairs Division, Brussels (1971).

    Google Scholar 

  3. R.W. Staehle, A.J. Forty and D. Van Rooyen, eds., “Fundamental Aspects of Stress Corrosion Cracking”, NACE, Houston (1969).

    Google Scholar 

  4. A.W. Thompson and I.M. Bernstein, eds., “Hydrogen Effects on Behavior of Materials”, AIME, New York (1976).

    Google Scholar 

  5. A.R.C. Westwood and R.M. Latanision, in “Corrosion by Liquid Metals”, Plenum Press, New York (1979), p. 405.

    Google Scholar 

  6. N.S. Stoloff in “Environment-Sensitive Fracture of Engineering Materials”, ed. Z.A. Foroulis, AIME, New York (1975), p. 486.

    Google Scholar 

  7. A.R.C. Westwood and J.R. Pickens, These Proceedings.

    Google Scholar 

  8. A.S. Tetelman and A.J. McEvily, Jr., “Fracture of Structural Materials”, Chapter 9, Wiley, New York (1967).

    Google Scholar 

  9. R.W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials”, Chaper 11, Wiley, New York (1976).

    Google Scholar 

  10. R.M. Latanision, O.H. Gastine and C.R. Compeau, in “Environment Sensitive Fracture of Engineering Materials”, ed., Z.A. Foroulis, AIME, New York (1979), p. 48.

    Google Scholar 

  11. R.M. Latanision, O.H. Gastine and C.R. Compeau, in “Environment Sensitive Fracture of Engineering Materials”, ed., Z.A. Foroulis, AIME, New York (1979), p. 48.

    Google Scholar 

  12. A.W. Thompson and I.M. Bernstein, in “Advances in Corrosion Science and Technology”, volume 7, eds., R.W. Staehle and M.G. Fontana, Plenum Press, New York (1980).

    Google Scholar 

  13. T.P. Hoar and J.G. Hines in “Stress Corrosion Cracking and Embrittlement”, Wiley, New York (1956), p. 107.

    Google Scholar 

  14. F.A. Champion, in “Symposium on Internal Stresses in Metals and Alloys”, Institute of Metals, London (1948), p. 468.

    Google Scholar 

  15. H.L. Logan, J. Res. N. B. S., 48: 99 (1952).

    Google Scholar 

  16. A.J. Forty, in “Physical Metallurgy of Stress Corrosion Cracking”, Interscience, New York (1959), p. 99.

    Google Scholar 

  17. N.J. Petch, Phil. Mag., 1 331 (1956).

    Article  ADS  Google Scholar 

  18. H.H. Uhlig, “Corrosion and Corrosion Control”, 2nd Edition, Wiley, New York (1971).

    Google Scholar 

  19. T.J. Smith and R.W. Staehle, Corrosion, 23: 117 (1967).

    Google Scholar 

  20. R.W. Staehle in Ref. 3. 34

    Google Scholar 

  21. O. Reynolds, Manchester Lit. Phil. Soc., 13: 93 (1874).

    Google Scholar 

  22. D.E. Hughes, Scientific American Supplement, 237: July 17, (1880).

    Google Scholar 

  23. R.M. Latanision and H. Opperhauser, Jr., Met. Trans., 5: 483 (1974).

    Article  Google Scholar 

  24. B.J. Berkowitz and R.D. Kane, Corrosion, 36: 24 (1980).

    Google Scholar 

  25. B.J. Berkowitz, J.J. Burton, C.R. Helms and R.S. Polizzotti, Scripta Met., 10: 871 (1976).

    Article  Google Scholar 

  26. B.E. Wilde, Corrosion, 27: 326 (1971).

    Google Scholar 

  27. M. Pourbaix, These Proceedings.

    Google Scholar 

  28. G.G. Hancock and H.H. Johnson, Trans. AIME, 236: 513 (1966).

    Google Scholar 

  29. D.O. Hayward and B.M.W. Trapnell, “Chemisorption”, 2nd Edition, Butterworths, London (1964).

    Google Scholar 

  30. M.R. Louthan and R.P. McNitt, in Ref. 3, p. 496.

    Google Scholar 

  31. C.A. Zapffe and C.E. Sims, Trans AIME, 145: 225 (1941).

    Google Scholar 

  32. A.R. Troiano, Trans. ASM, 52: 54 (1960).

    Google Scholar 

  33. R.A. Oriani, Berichte der Bunsenges fur Phys. Chem., 76: 848 (1972).

    Google Scholar 

  34. C.D. Beachem, Met. Trans., 3: 437 (1972).

    Article  Google Scholar 

  35. J.A. Cium, Scripta Met., 9 51 (1975).

    Article  Google Scholar 

  36. S.P. Lynch, Metals Forum, 2: 189 (1979).

    Google Scholar 

  37. D.G. Westlake, Trans. ASM, 62: 1000 (1969).

    Google Scholar 

  38. J.J. Gilman, Phil. Mag., 26: 801 (1972).

    Article  ADS  Google Scholar 

  39. P. Bastien and P. Azou, Proc. 1st World Metallurgical Congress, ASM, Cleveland (1951), p. 535.

    Google Scholar 

  40. J.K. Tien, A.W. Thompson, I.M. Bernstein and R.J. Richards, Met. Trans., 7A: 821 (1976).

    Article  Google Scholar 

  41. A.R.C. Westwood, C.M. Preece, and M.H. Kamdar, in “Fracture, An Advanced Treatise”, Academic Press, New York (1971), p. 589.

    Google Scholar 

  42. A.R.C. Westwood, C.M. Preece, and M.H. Kamdar, Trans. ASM., 60: 763 (1967).

    Google Scholar 

  43. A. Kelly, W.R. Tyson, and A.H. Cottrell, Phil. Mag., 15: 567 (1967).

    Article  ADS  Google Scholar 

  44. S.P. Lynch, in “Proc. Fourth Intl. Conf. on Fracture”, Permagon, New York (1977), p. 859.

    Google Scholar 

  45. P.J. Birdseye and D. A. Smith, Surface Science, 23: 198 (1970).

    Article  ADS  Google Scholar 

  46. R.M. Latanision, N.H. Macmillan and R.G. Lye, Corrosion Science, 13: 387 (1973).

    Article  Google Scholar 

  47. G. Lippmann, Ann. Chem. Phys., 5: 494 (1875).

    Google Scholar 

  48. N.H. Macmillan, in Ref. 1, p. 629.

    Google Scholar 

  49. E.D. Shchukin, in Ref. 1, p. 701.

    Google Scholar 

  50. A. Pfutzenreuter and G. Mazing, Z. Metallk., 42: 361 (1951).

    Google Scholar 

  51. V.I. Likhtmann, L.A. Kochanova, D.T. Leykis and E.D. Shchukin, Elektrokhimiya, 5. 729 (1969).

    Google Scholar 

  52. R.M. Latanision, H. Opperhauser, Jr., and A.R.C. Westwood, Scripta Met., 12: 475 (1978).

    Article  Google Scholar 

  53. R.M. Latanision, in Ref. 1, p. 3.

    Google Scholar 

  54. J.S. Ahearn, J.J. Mills, and A.R.C. Westwood, J. Appi. Phys., 49: 614 (1978).

    Article  ADS  Google Scholar 

  55. C.J. McMahon, Materials Science and Engineering, 25: 233 (1976).

    Article  Google Scholar 

  56. R. Speiser and J.W. Spretnak, in “Stress Corrosion Cracking and Embrittlement”, Wiley, N.Y. (1956), p. 52.

    Google Scholar 

  57. R.M. Latanision and H. Cpperhauser, Jr., Met Trans., 5; 483 (1974)

    Article  Google Scholar 

  58. R.M. Latanision and H. Cpperhauser, Jr., Met Trans., 5; 483 (1974)

    Article  Google Scholar 

  59. H.L. Marcus and P.W. Palmberg, Trans. AIME, 245; 1664 (1969).

    Google Scholar 

  60. D.F. Stein, A. Joshi and R.P. Laforce, Trans. ASM, 62: 736 (1969).

    Google Scholar 

  61. K. Yoshino and C.J. McMahon, Jr. Met Trans., 5: 363 (1974).

    Article  Google Scholar 

  62. R.O. Ritchie, Met. Trans., 8A: 1131 (1977).

    Article  Google Scholar 

  63. A. Joshi and D.F. Stein, Met Trans., 1: 2543 (1970)

    Google Scholar 

  64. A. Joshi and D.F. Stein, J. Insti. Metal, 178 (1971)

    Google Scholar 

  65. J.M. Popplewell and J.A. Ford, Met. Trans., 5: 2600 (1974)

    Article  Google Scholar 

  66. J.M. West, “Electrodeposition and Corrosion Processes”, Van Nostrand-Reinhold, London (1971).

    Google Scholar 

  67. F. Zakroczymski, Z. Szklarska-Smialowska and M. Smialowski, Werkstoffe und Korrosion, 27: 625 (1976).

    Article  Google Scholar 

  68. M. Zamanzedeh, A. Allam, H. Pickering, and G.K. Hubler, J. Electrochem. Soc., 127: 1688 (1980).

    Article  Google Scholar 

  69. H.W. Liu, Y.L. Hu and P.J. Ficalora, Engineering Fracture Mechanics, 5: 281 (1973).

    Article  Google Scholar 

  70. N. Pessall, G.P. Airey and B.P. Lingenfelter, Corrosion 35: 100 (1979).

    Google Scholar 

  71. G.S. Was, Sc. D. Thesis, M.I.T., June 1980.

    Google Scholar 

  72. S.M. Bruemmer, R.H. Jones, M.T. Thomas and D.R. Baer, Scripta Met., 14: 137 (1980).

    Article  Google Scholar 

  73. R.M. Latanision and R.M. Staehle, Scripta Met., 2: 667 (1967)

    Article  Google Scholar 

  74. E. Heubaum and H. Birnbaum, ONR Tech. Rept., March 1981.

    Google Scholar 

  75. R.M. Latanision, J.C. Turn and R.C. Compeau, in “Proc. Third Int’l Conference on Mechanical Behavior of Metals,” vol. 2, Pergamon, Toronto (1979), p. 475.

    Google Scholar 

  76. R.M. Latanision, J.C. Turn and R.C. Compeau, in “Proc. Third Int’l Conference on Mechanical Behavior of Metals,” vol. 2, Pergamon, Toronto (1979), p. 475.

    Google Scholar 

  77. M.F. Ashby, F. Spaepen and S. Williams, Acta Met., 26: 1647 (1978).

    Article  Google Scholar 

  78. M.A. Devanathan and A. Stachurski, Proc. Roy. Soc., A270: 90 (1962).

    Article  ADS  Google Scholar 

  79. M.R. Louthan, G.R. Caskey, J.A. Donovan and D.E. Rawl, Mat. Sci. Eng., 10: 357 (1972)

    Article  Google Scholar 

  80. J.A. Donovan, Met Trans., 7A: 145 (1976).

    Article  Google Scholar 

  81. L.M. Foster, T.H. Jack and W.W. Hill, Met Trans., 1: 3117 (1970).

    Google Scholar 

  82. M. Kurkela and R.M. Latanision, Scripta Met., 13: 927 (1979).

    Article  Google Scholar 

  83. J.O.M. Bockris, M.A. Genshaw, and M. Fullenwider, Electrochem. Acta, 15: 47 (1970).

    Article  Google Scholar 

  84. J.C. Slater and K.H. Johnson, Physics Today, 34 (Oct. 1974).

    Google Scholar 

  85. T.E. Fischer, J. Vac. Sci. Technol., 11: 252 (1974).

    Article  ADS  Google Scholar 

  86. T.E. Fischer, in Ref. 1, p. 127.

    Google Scholar 

  87. M. Ciftan and E. Saibel, Int. J. Engng. Scir 17: 175 (1979).

    Article  Google Scholar 

  88. M. Eberhart, R. O’Malley, A. Abdelmassih, and E. Johns, “A New View of Hydrogen Embrittlenient,” Project report in MIT Course 3. 22J /10. 613J Solid State Surface Science, May, 1981.

    Google Scholar 

  89. C.L. Briant and R.P. Messmer, Phil. Mag. B. 42: 569 (1980).

    Article  Google Scholar 

  90. W. Losch, Acta Met., 27: 1885 (1979).

    Article  Google Scholar 

  91. E.D. Muetterties, in “Transition Metal Hydrides”, Dekker, N.Y. (1971).

    Google Scholar 

  92. R. Ugo, Catal. Rev. — Sci. Eng., 11: 225 (1975).

    Article  Google Scholar 

  93. J. O’M. Bockris, “Energy Options,” Halsted, New York (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Latanision, R.M. (1983). General Overview: Atomistics of Environmentally-Induced Fracture. In: Latanision, R.M., Pickens, J.R. (eds) Atomistics of Fracture. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3500-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3500-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3502-3

  • Online ISBN: 978-1-4613-3500-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics