Skip to main content

Part of the book series: NATO Advanced Study Institutes Series ((NSSB,volume 81))

  • 112 Accesses

Abstract

The existence of a magnetic impurity in a metal is known to yield a resistance minimum in the dilute limit, whereas the anomalous resistivity in concentrated alloys x ∿ 5% is the subject of recent research. A historical review of resistivity and magnetic susceptibility experiments is presented culminating with the determination of a well defined impurity magnetic moment. The Kondo effect of a ℓnT divergence in the resistivity of dilute alloys is discussed. A new divergence of the form ρ ∿ x2/T arising from coupled magnetic impurities is obtained at low temperatures, and correlated with recent measurements on layered compounds. The latter term yields a resistance minimum for ferromagnetic alignment of the impurity spins. Changes in the RKKY interaction induced by the Fermi surface topology allow for antiferromagnetic alignment in some cases where the resistivity minimum is absent. The influence of the magnetic impurity pairs on superconductivity is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Meissner and G. Voight, Ann. Phys. 7, 761 (1930).

    Article  Google Scholar 

  2. W. J. De Haas en J. De Boer, Physica 1, 1115 (1933).

    Google Scholar 

  3. J. O. Linde, Ann. Phys. 10, 52 (1931).

    Article  Google Scholar 

  4. A. N. Gerritsen and J. O. Linde, Physica 17, 537 (1951).

    Google Scholar 

  5. J. Owen, M. E. Browne, W. D. Knight, and C. Kittel, Phys. Rev. 102, 1501 (1956).

    Article  ADS  Google Scholar 

  6. G. K. White, Can. J. Phys. 33, 119 (1955).

    Article  ADS  Google Scholar 

  7. G. J. Van Den Berg, in “Progress in Low Temperature Physics”, (G. J. Gorter, ed.) Vol. 4, Ch. 4, North Holland, Amsterdam, 1964.

    Google Scholar 

  8. J. Korringa and A. N. Gerritsen, Physica 19, 457 (1953).

    Article  ADS  MATH  Google Scholar 

  9. R. J. Elliott, Phys. Rev. 94, 564 (1954).

    Article  ADS  Google Scholar 

  10. R. W. Schmitt, Phys. Rev. 103, 83 (1956).

    Article  ADS  Google Scholar 

  11. K. Yosida, Phys. Rev. 107, 396 (1957).

    Article  ADS  MATH  Google Scholar 

  12. A. D. Brailsford and A. W. Overhauser, J. Phys. Chem. Sol. 15, 140 (1960).

    Article  ADS  Google Scholar 

  13. P. W. Anderson, Phys. Rev. 124, 1030 (1961).

    Article  Google Scholar 

  14. A. J. Heeger, in Solid State Physics (ed. H. Ehrenreich, F. Seitz and D. Turnbull, Acad. Press London, 1969 ), Vol. 23, p.283 and references cited therein.

    Google Scholar 

  15. B. T. Matthias, M. Peter, H. J. Williams, A. M. Clogston, E, Corenzwit and R. C. Sherwood, Phys. Rev. Lett. 5, 542 (1960).

    Article  ADS  Google Scholar 

  16. M. P. Sarachik, E. Corenzwit and L. D. Longinotti, Phys. Rev. 135, A1041 (1964).

    Article  ADS  Google Scholar 

  17. J. Kondo, Prog. Theor. Phys, (Kyoto) 32, 37 (1964).

    Article  ADS  Google Scholar 

  18. J. Kondo, in Solid State Physics (ed. H. Ehrenreich, F. Seitz and D, Turnbull, Acad. Press. London, 1969 ), Vol. 23, p. 183 and references cited therein.

    Google Scholar 

  19. H. Fröhlich and F. R. N. Nabarro, Proc. Roy. Soc. A175, 382 (1940).

    Article  ADS  MATH  Google Scholar 

  20. C. Zener, Phys. Rev. 8l, 440 (1951).

    Article  ADS  Google Scholar 

  21. J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).

    Article  ADS  Google Scholar 

  22. P. Monod, Phys. Rev. Lett. 19, 113 (1967).

    Article  ADS  Google Scholar 

  23. S. D. Silverstein, Phys. Rev. Lett. 16, 466 (1966); R. J. Harrison and M. Klein, Phys. Rev. 154, 540 (1967).

    Article  ADS  Google Scholar 

  24. G. Grüner and A. Zawadowski, Reports on Prog. in Physics 37, 1497 (1974).

    Google Scholar 

  25. D. J. Scalapino, Phys. Rev. Lett. 16, 937 (1966).

    Article  ADS  Google Scholar 

  26. P. W. Anderson, G. Yuval, and D. R. Hamann, Phys. Rev. B1, 4464 (1970)

    Article  ADS  Google Scholar 

  27. M. Fowler and A. Zawadowski, Sol. St. Comm. 9, 471 (1971).

    Article  ADS  Google Scholar 

  28. K. G. Wilson, Rev. Mod. Phys. 67, 773 (1975).

    Article  ADS  Google Scholar 

  29. N. Andrei and J. H. Lowenstein, Phys. Rev. Lett. 46, 356 (1981); N. Andrei, Phys. Rev. Lett. 45, 379 (1980); P. B. Wiegmann, Phys. Lett. 80A, 163 (1980).

    Article  MathSciNet  ADS  Google Scholar 

  30. F. S. Liu and J. Ruvalds, Phys. Rev. Lett. (submitted for publication).

    Google Scholar 

  31. A. A. Abrikosov, Physics 2, 5 (1965); 2, 61 (1965).

    Google Scholar 

  32. R. Abe, Prog, of Theor. Phys. 36, 454 (1966).

    Article  ADS  Google Scholar 

  33. A. A. Abrikosov and L. P. Gorkov, Zh. Eksp. Teor. Fiz. 39, 1781 (1960), [Sov. Phys. JETP 12, 1243 (1961)].

    Google Scholar 

  34. D. A. Whitney, R.M. Fleming and R.V. Coleman, Phys. Rev. B15, 3405 (1977).

    Article  ADS  Google Scholar 

  35. S. J. Hillenius, R. V. Coleman, E. R. Domb and D. J. Sellmyer, Phys. Rev. B19, 471 1 (1979).

    Google Scholar 

  36. P. G, De Gennes and J. Friedel, J. Phys. Chem. Sol., 4, 71 (1958).

    Article  ADS  Google Scholar 

  37. J. Kondo, Progr. Theor. Phys. 34, 523 (1965).

    Article  ADS  Google Scholar 

  38. K, Yosida and H. Miwa, Phys. Rev. 144, 375 (1966).

    Article  ADS  Google Scholar 

  39. T. Sugawara, I. Yamase, and R. Soga, J. Phys. Soc. Japan 20, 618 (1965).

    Article  ADS  Google Scholar 

  40. E. Müller-Hartman and J. Zittartz, Phys. Rev. Lett. 26, 428 (1971).

    Article  ADS  Google Scholar 

  41. For an excellent review of re-entrant superconductivity, see, M, Brian Maple, in Magnetism, Vol. V, ed. G. Rado and H. Suhl (Acad, Press, New York, 1973 ), p. 289.

    Google Scholar 

  42. J. J. Hauser, M. Robbins and F. J. Di Salvo, Phys. Rev. B8, 1038 (1973).

    Article  ADS  Google Scholar 

  43. J. Ruvalds and Fu-sui Liu, Sol. State Comm. (1981); Fu-sui Liu and J. Ruvalds (to be published).

    Google Scholar 

  44. L. P. Gorkov and A. I. Rusinov, Sov. Phys. JETP 19, 922 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Ruvalds, J. (1983). Resistance Minima in Magnetic Alloys. In: Devreese, J.T., Brosens, F. (eds) Electron Correlations in Solids, Molecules, and Atoms. NATO Advanced Study Institutes Series, vol 81. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3497-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3497-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3499-6

  • Online ISBN: 978-1-4613-3497-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics