Alkaline Hydrolysis in Micellar Sodium Dodecyl Sulfate; The “Binding” of −OH to Anionic Micelles

  • Frank H. Quina
  • Mario J. Politi
  • Iolanda M. Cuccovia
  • Sandra M. Martins-Franchetti
  • Hernan Chaimovich

Abstract

Micellar solutions of the anionic surfactant sodium dodecyl sulfate (SDS) markedly decrease the rate of alkaline hydrolysis of substrates such as N-alkyl-4-cyanopyridinium ions and p-nitrophenyl alkanoates. For the lower homologs, the magnitude of the rate decrease is a sensitive function of the length of the alkyl chain of the substrate. However, the observed rates of alkaline hydrolysis for the higher homologs converge to a limiting value which is virtually independent of further increase in the alkyl chain length or of the SDS concentration. In this limit of essentially complete substrate incorporation, the observed rate constants for alkaline hydrolysis are directly proportional to the concentration of added NaCl and are nearly second-order with respect to added NaOH in the absence of buffer. These results, which demonstrate that the intrinsic second-order rate constant for alkaline hydrolysis in the micellar pseudophase of SDS is not zero, can be analyzed in terms of the free sodium ion concentration dependence of the local “pH” at the SDS micellar surface.

Keywords

Surfactant Hydrolysis Bromide Pyridinium Dodecyl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    This is paper 6 of the series Ion Exchange in Micellar Solutions.Google Scholar
  2. 2.
    F.M. Menger and C.E. Portnoy, J. Amer. Chem. Soc., 89, 4698 (1967).CrossRefGoogle Scholar
  3. 3.
    E.J. Fendler, R.P. Liechti and J.H. Fendler, J. Org. Chem., 35, 1658 (1970).CrossRefGoogle Scholar
  4. 4.
    G.J. Buist, C.A. Bunton, L. Robinson, L. Sepúlveda and M.Stam, J. Amer. Chem. Soc., 92, 4072 (1970).CrossRefGoogle Scholar
  5. 5.
    J.L. Kurz, J. Phys. Chem., 66, 2239 (1962).CrossRefGoogle Scholar
  6. 6.
    C.A. Bunton and L. Robinson, J. Phys. Chem., 74, 1062 (1970).CrossRefGoogle Scholar
  7. 7.
    P. Mukerjee and K. Banerjee, J. Phys. Chem., 68, 3567 (1964).CrossRefGoogle Scholar
  8. 8.
    M.S. Fernandez and P. Fromhertz, J. Phys. Chem., 81, 1755 (1977).CrossRefGoogle Scholar
  9. 9.
    C.A. Bunton and L. Robinson, J. Org. Chem., 34, 773 (1969).CrossRefGoogle Scholar
  10. 10.
    I.M. Cuccovia, E.H. Schröter, R.C. de Baptista and H. Chaimovich, J. Org. Chem., 42, 3400 (1977).CrossRefGoogle Scholar
  11. 11.
    M.T.A. Behme, J. G. Fullington, R. Noel and E.H. Cordes, J. Amer. Chem. Soc., 87, 266 (1965).CrossRefGoogle Scholar
  12. 12.
    E.F.J. Duynstee and E. Grunwald, Tetrahedron, 21, 2401 (1965).CrossRefGoogle Scholar
  13. 13.
    H. Nogami, S.Awazu, Y. Kanakubo, Chem. Pharm. Bull., 11, 13 (1963).Google Scholar
  14. 14.
    H. Nogami, S. Awazu and M. Iwatsura, Chem. Pharm. Bull., 81 1251 (1963).Google Scholar
  15. 15.
    C.A. Bunton, L. Robinson and L. Sepúlveda, J. Amer. Chem. Soc., 91, 4813 (1969).CrossRefGoogle Scholar
  16. 16.
    C.N. Sukenik, B. Weisman and R.G. Bergman, J. Amer. Chem. Soc., 97, 445 (1975).CrossRefGoogle Scholar
  17. 17.
    J.K. Landquist, J. Chem. Soc. Perkin I, 454 (1976).Google Scholar
  18. 18.
    F.H. Quina, Tese de Livre-Docência, Instituto de Quimica, Universidade de São Paulo (1977).Google Scholar
  19. 19.
    M. Politi, I.M. Cuccovia, H. Chaimovich, M.L.C, de Almeida, J.B.S. Bonilha and F.H. Quina, Tetrahedron Lett., 115 (1978).Google Scholar
  20. 20.
    F.H. Quina, M.J. Politi, I.M. Cuccovia, E. Baumgarten, S.M. Martins-Franchetti and H. Chaimovich, J. Phys. Chem., 80, 361 (1980).CrossRefGoogle Scholar
  21. 21.
    E.M. Kosower and J.W. Patton, Tetrahedron, 22, 2081 (1966).CrossRefGoogle Scholar
  22. 22.
    H. Chaimovich, M.J. Politi, J.B.S. Bonilha and F.H. Quina, J. Phys. Chem., 83, 1951 (1979).CrossRefGoogle Scholar
  23. 23.
    H. Chaimovich, R.M.V. Aleixo, I.M. Cuccovia, D. Zanette and F.H. Quina. In “Solution Behaviour of Surfactants - Theoretical and Applied Aspects”, K.L. Mittal and E.J. Fendler, Eds. Plenum Press, New York (1981).Google Scholar
  24. 24.
    J. Th. G. Overbeek and D. Stigter, Ree. Trav. Chim., 75, 1263 (1956).CrossRefGoogle Scholar
  25. 25.
    E.K. Rideal, Proc. Roy. Soc. (London) A209, 431 (1951); J.T. Davies and E.K. Rideal, ibid. A194, 417 (1948).Google Scholar
  26. 26.
    F.H. Quina and H. Chaimovich, J. Phys. Chem., 83, 1844 (1979).CrossRefGoogle Scholar
  27. 27.
    L.S.Romsted, Ph.D. Thesis, Indiana University, Bloomington (1975).Google Scholar
  28. 28.
    K.Shinoda and T. Soda, J. Phys. Chem., 67, 2072 (1963); P. Mukerjee, ibid., 66, 1733 (1962).Google Scholar
  29. 29.
    P.Mukerjee, J. Phys. Chem., 66, 943 (1962).CrossRefGoogle Scholar
  30. 30.
    C.A.Bunton, K. Ohmenzetter and L. Sepúlveda, J. Phys. Chem., 81, 2000 (1977).Google Scholar
  31. 31.
    C.A.Bunton and L.S. Romsted, in “The Chemistry of Functional Groups”, Supplement B: “The Chemistry of Acid Derivatives”, Part 2, S. Patai, Ed. Wiley, New York (1979), p. 945.Google Scholar
  32. 32.
    Guthrie, J.P., Can. J. Chem., 51, 3494 (1973).CrossRefGoogle Scholar
  33. 33.
    I.M. Cuccovia, Tese de Doutoramento, Instituto de Quimica, Universidade de São Paulo (1980).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Frank H. Quina
    • 1
  • Mario J. Politi
    • 1
  • Iolanda M. Cuccovia
    • 1
  • Sandra M. Martins-Franchetti
    • 1
  • Hernan Chaimovich
    • 1
  1. 1.Group for Interfacial Studies (GIST) Instituto de QuímicaUniversidade de São PauloBrasil

Personalised recommendations