Skip to main content

Selective Mercuration of Dienes in Micellar Medium: Mechanism and Potential Synthetic Application

  • Chapter
Solution Behavior of Surfactants

Abstract

The potential for application of micellar catalysis to synthetically useful transformations is large and unexplored. We present herein a brief summary of previous work in this area and preliminary results of our work aimed at using the environment of an anionic aqueous micelle to direct the course of the hydroxymercuration of organic substrates. We have found this medium to be both a useful way to selectively mono-functionalize non-conjugated dienes and to be able to control the competition between diol and cyclic ether formation in these same substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. For example see: J. H. Fendlar and E. J. Fendlar, “Catalysis in Micellar and Macromolecular Systems,” Academic Press, New York, N.Y. (1975); C. A. Bunton in: “Applications of Biomedical Science in Chemistry, Part II,” J. B. Jones Ed., Wiley, New York, N.Y. (1976); L. R. Fisher and D. G. Oakenfull, Chem. Soc. Rev. 6 25 (1977).

    Google Scholar 

  2. a) J. M. Brown and C. A. Bunton, Chem Comm. 969 (1974); (b) C. A. Bunton, L. Robinson and M. F. Stames, Tet. Let. 121 (1971); (c) D. Hindman and J. Jacobus, Tet. Let. 1619 (1974).

    Google Scholar 

  3. R. A. Moss, Y. S. Lee and T. J. Lukas, J. Am. Chem., Soc. 101 2499 (1979).

    Article  Google Scholar 

  4. Y. Ihara, Chem. Comm. 984 (1978).

    Google Scholar 

  5. R. A. Moss et al., this volume.

    Google Scholar 

  6. T. Sugimoto, Y. Matsumura, T. Imanishi, S. Tanimota and M. Okana, Tet. Let. 3431 (1978).

    Google Scholar 

  7. S. I. Goldberg, N. Baba, R. L. Green, R. Pandian, J. Stowers and T. B. Dunlap, J. Am. Chem. Soc. 100, 6768 (1978).

    Article  Google Scholar 

  8. N. Baba, Y. Matsumura and T. Sugimoto, Tet. Let. 4281 (1978).

    Google Scholar 

  9. T. Sugimoto, T. Kokubo, J. Miyazaki, Y. Matsumura, S. Tanimoto and M. Okana, Organic Chem. Abstract No. 17, ACS/CSJ Chemical Congress, 1979. This more recent report suggests that even higher optical yields have been obtained for BSA related systems.

    Google Scholar 

  10. a) R. A. Moss, C. J. Talkowski, D. W. Reger and C. E. Powell, J. Am. Chem Soc. 95, 5215 (1973) and references therein; (b) W. Kirmse, G. Rauleder and H. J. Ratajczak, J. Am. Chem. Soc. 97, 4141 (1975).

    Google Scholar 

  11. C. N. Sukenik and R. G. Bergman, J. Am. Chem. Soc. 98, 6613 (1976).

    Article  Google Scholar 

  12. a) U. Gani, C. Lapinte and P. Viout, Tet. Let. 4435 (1973); (b) C. Lapine and P. Viout, Tet. Let. 2401 (1974); (c) G. Roblot, G. Meyer and P. Viout, Tet. Let. 2331 (1975).

    Google Scholar 

  13. M. J. Minch, S. S. Chen and R. Peters, J. Org. Chem. 43. 31 (1978).

    Article  Google Scholar 

  14. L. R. Cramer and J. C. Berg, J. Phys. Chem. 72., 3686 (1968).

    Article  Google Scholar 

  15. W. Tagaki and H. Hara, Chem. Comm. 891 (1973).

    Google Scholar 

  16. F. M. Menger, J. U. Rhee and H. K. Rhee, J. Org. Chem. 40, 3803 (1975).

    Article  Google Scholar 

  17. G. C. Joshi, N. Singh and L. M. Panda, Tet. Let. 1461 (1972).

    Google Scholar 

  18. M. Mitani, T. T. S. Uchida and K. Koyama, Chem. Lett. 1209 (1974).

    Google Scholar 

  19. For a good recent review of phase transfer catalyses see: “Phase Transfer Catalysis in Organic Synthesis,” W. P. Weber and G. W. Gokel, Springer-Verlag, New York (1977).

    Google Scholar 

  20. For useful reviews see: S. Regen, Ang. Chem. Int. Ed. Eng. 18, 21. (1979); and A. McKillop and D. W. Young, Synthesis 401–422 and 481–500 (1979).

    Google Scholar 

  21. a) B. Svens and B. Rosenholm, J. Colloid Inter. Sci. 44, 495 (1973); (b) D. Stigter, J. Phys. Chem. 78, 2480 (1974).

    Google Scholar 

  22. An excellent, recent, leading reference is: F. M. Menger, Accts. Chem. Res. 12, 111 (1978).

    Google Scholar 

  23. J. W. Larsen and L. J. Magid, J. Phys. Chem. 78, 834 (1974).

    Article  Google Scholar 

  24. For examples see: M. Donbrow and C. T. Rhodes, J. Pharm. Pharmac 18 424 (1966); P. L. Yeagle, Accts. Chem. Res. 11, 321 (1978).

    Google Scholar 

  25. D. C. Robins and I. L. Thomas, J. Colloid Interface Sci. 26, 422 (1968).

    Article  Google Scholar 

  26. Chapter 3 of Ref. la is a good review of solubilization sites within a micelle.

    Google Scholar 

  27. D. A. Jaeger and R. W. Robertson, J. Org. Chem. 42, 3298 (1977).

    Article  Google Scholar 

  28. Y. Nakamura, T. Kato and Y. Morita, Organic Chem. Abstract No. 147, ACS/CSJ Chemical Congress (1979).

    Google Scholar 

  29. H. C. Brown and P. J. Geoghegan, J. Org. Chem. 35, 1844 (1970).

    Article  Google Scholar 

  30. For example see: J. W. Larsen and L. J. Magid, J. Am. Chem. Soc. 96, 5774 (1974).

    Google Scholar 

  31. H. C. Brown, P. J. Geoghegan, G. J. Lynch and J. T. Kurek, J. Org. Chem. 37, 1941 (1972).

    Article  Google Scholar 

  32. a) Bambagiotti et al. (32b) report that this reaction yields a 1:1 mixture of mono-ol and diol. This discrepancy with the results in Ref. 6 is not commented on and we cannot explain it. We have, however, been able to reporduce the results in Ref. 31 and are thus content to compare our SLS system to the THF/H2O system reported in Ref. 31. If anything, comparison of our results in SLS to the results in Ref. 32b would make for an even more impressive contrast; (b) M. Bambagiotti, F. F. Vincieri and S. A. Coran, J. Org. Chem. 39, 680 (1974).

    Google Scholar 

  33. Support for this explanation can be inferred from the quantitative conversion of terpineol (II) to cineole (III) by mercuration in anhydrous THF: cf. J. M. Coxon, M. P. Hartshorn, J. W. Mitchell and K. E. Richards, Chem Ind. 652 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Sukenik, C.N., Link, C.M. (1982). Selective Mercuration of Dienes in Micellar Medium: Mechanism and Potential Synthetic Application. In: Mittal, K.L., Fendler, E.J. (eds) Solution Behavior of Surfactants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3494-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3494-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3496-5

  • Online ISBN: 978-1-4613-3494-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics