The Quantitative Analysis of Micellar Effects on Chemical Reactivity and Equilibria: An Evolutionary Overview

  • Hernan Chaimovich
  • Regina M. V. Aleixo
  • Iolanda M. Cuccovia
  • Dino Zanette
  • Frank H. Quina


The ever-increasing experimental literature of micellar effects on chemical reactions and equilibria has created a growing awareness of the necessity for a unified model which permits quantitative analysis and prediction of these effects. The numerous contributions which have led to our present understanding can be associated with basically three different points of view: (1) simple-pseudo phase partitioning of all species, (2) electrostatic potential models, and (3) ion-exchange models. Although each of these models has been shown to be adequate under certain circumstances, none has yet been shown to be definitive. Thus, simple pseudophase-partitioning, while serving to describe a large range of experimental phenomena, frequently requires additional empirical variation of the partitioning coefficients with changing conditions. The electrostatic potential models include terms which are frequently difficult to relate to readily accesible experimental parameters, except under very well defined conditions. The fact that such different models do describe many facets of micellar modified reactions has led to the development of ion-exchange formalisms which attempt to incorporate the cogent features of all models within a single conceptual framework.


Chemical Reactivity Micellar Solution Selectivity Coefficient Stern Layer Unimolecular Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    This is paper 5 of the series Ion Exchange in Micellar Solutions.Google Scholar
  2. 2.
    J.H. Fendler and E.J. Fendler, “Catalysis in Micellar and Macromolecular Systems”, Academic Press, New York, 1975.Google Scholar
  3. 3.
    K.L. Mittal, Editor, “Solution Chemistry of Surfactants”, Plenum Press, New York, 1979.Google Scholar
  4. 4.
    K.L. Mittal, Editor, “Micellization, Solubilization and Microemulsions”, Plenum Press, New York, 1977.Google Scholar
  5. 5.
    C. Tanford. “The Hydrophobic Effect: Formation of Micelles and Biological Membranes”. J. Wiley, New York, 1973.Google Scholar
  6. 6.
    J. Lang, C. Tondre, R. Zana, R. Bauer, H. Hoffman and W. Ulbricht, J. Phys. Chem.,79, 276 (1975); E.A.G. Aniansson, S.N. Wall, M. Almgren, H. Hoffman, I. Yielmann, W. Ulbricht, R. Zana, J. Lang and C. Tondre, J. Phys. Chem., 80, 905 (1976).CrossRefGoogle Scholar
  7. 7.
    H.H. Grünhagen, J. Colloid Interface Sci., 53, 282 (1975).CrossRefGoogle Scholar
  8. 8.
    M.A.J. Rodgers and M.F. da Silva e Wheeler, Chem. Phys. Lett., 53, 165 (1978).Google Scholar
  9. 9.
    R.C. Dorrance and T.F. Hunter, J. Chem. Soc. Faraday Trans. I, 68, 1312 (1972).CrossRefGoogle Scholar
  10. 10.
    P.P. Infelta, M. Grätzel and J.K. Thomas, J. Phys. Chem., 78, 190 (1974).CrossRefGoogle Scholar
  11. 11.
    S. Schreier, J.R. Ernandes, I. Cuccovia and H. Chaimovich, J. Magnetic Res., 30, 283 (1978).Google Scholar
  12. 12.
    G.S. Hartley and J.W. Roe, Trans. Faraday Soc., 36, 101 (1940).CrossRefGoogle Scholar
  13. 13.
    D. Stigter, J. Colloid Interface Sci., 47, 473 (1974).CrossRefGoogle Scholar
  14. 14.
    J. Simplicio and K. Schwenzer, Biochemistry, 12, 1923 (1973).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Baumrucker, M. Calzadilla, M. Centeno, G. Lehrmann, M. Urdaneta, P. Lindquist, D. Dunham, M. Price, B. Sears and E.H. Cordes, J. Amer. Chem. Soc., 94, 8164 (1972).CrossRefGoogle Scholar
  16. 16.
    J.H. Fendler; E.J. Fendler and M.V. Merrit, J. Org. Chem., 36, 2172 (1971).CrossRefGoogle Scholar
  17. 17.
    C. A. Bunton and L. Robinson, J. Phys. Chem., 73, 4237 (1969); J. Phys. Chem., 74, 1062 (1970).CrossRefGoogle Scholar
  18. 18.
    G.S. Hartley, Trans. Faraday Soc., 30, 444 (1934).CrossRefGoogle Scholar
  19. 19.
    P. Mukerjee and K. Banerjee, J. Phys. Chem., 68, 3567 (1964).CrossRefGoogle Scholar
  20. 20.
    L.K.J. Tong and M.C. Glesmann, J. Amer. Chem. Soc., 79, 4305, (1957).CrossRefGoogle Scholar
  21. 21.
    M.S. Fernandez and P. Fromhertz, J. Phys. Chem., 81, 1755 (1977).CrossRefGoogle Scholar
  22. 22.
    J.L. Kurz, J. Phys. Chem., 66, 2239 (1962).CrossRefGoogle Scholar
  23. 23.
    K. Shirahama, Bull. Chem. Soc. Jpn., 48, 2673 (1975).CrossRefGoogle Scholar
  24. 24.
    M. Almgren and R. Rydholm., J. Phys. Chem. 83, 360 (1979).CrossRefGoogle Scholar
  25. 25.
    N. Funasaki, J. Phys. Chem., 83, 1998 (1979).CrossRefGoogle Scholar
  26. 26.
    I.M. Kolthoff and W.F. Johnson, J. Amer. Chem. Soc., 73, 4563 (1951).CrossRefGoogle Scholar
  27. 27.
    F.M. Menger and C.E. Portnoy, J. Amer. Chem. Soc., 89, 4698 (1967).CrossRefGoogle Scholar
  28. 28.
    E.H. Cordes, “Reaction Kinetics in Micelles”, Plenum Press, New York, 1973.Google Scholar
  29. 29.
    C.A. Bunton. Prog. Solid State Chem., 8, 239 (1973); Pure Appl. Chem., 49, 969 (1977).Google Scholar
  30. 30.
    I.V. Berezin, K. Martinek, A.K. Yatsimirski. Russ. Chem. Revs. (English Transl.) 42, 487 (1973).Google Scholar
  31. 31.
    K. Martinek, A.K. Yatsimirski, A.V. Levashov and I.V. Berezin in “Micellization, Solubilization and Microemulsions”, K.L. Mittal,Ed. Vol. 2 p. 489, Plenum Press, New York, 1977.Google Scholar
  32. 32.
    L.S. Romsted in “Micellization, Solubilization and Microemulsions”. K.L. Mittal,Ed. Vol. 2 p. 509, Plenum Press, New York, 1977.Google Scholar
  33. 33.
    L.S. Romsted, Ph. D. Thesis, Indiana University, Bloomington (1975).Google Scholar
  34. 34.
    F.H. Quina and H. Chaimovich, J. Phys. Chem. 83, 1844 (1979).CrossRefGoogle Scholar
  35. 35.
    C.A. Bunton, K. Ohmenzetter and L. Sepulveda, J. Phys. Chem., 81, 2000 (1977); C.A. Bunton, L.S. Romsted and H.J. Smith, J. Org. Chem. 43, 4299 (1978) and references cited therein.Google Scholar
  36. 36.
    L.J. Winters and E. Grunwald, J. Amer. Chem. Soc., 87, 4608 (1965).CrossRefGoogle Scholar
  37. 37.
    K. Martinek, A.P. Osipov, A.K. Yatsimirski and I.V. Berezin, Tetrahedron, 31, 709 (1975).CrossRefGoogle Scholar
  38. 38.
    E.H. Cordes, Pure Appl. Chem., 50, 617 (1978).CrossRefGoogle Scholar
  39. 39.
    H. Chaimovich, J.B.S. Bonilha, M.J. Politi and F.H. Quina, J. Phys. Chem., 83, 1951 (1979).CrossRefGoogle Scholar
  40. 40.
    J.B.S. Bonilha, H. Chaimovich, V. Toscano and F.H. Quina, J. Phys. Chem., 83, 2463 (1979).CrossRefGoogle Scholar
  41. 41.
    F.H. Quina, M.J. Politi, I. Cuccovia, E.Baumgarten, S. M. Martins-Franchetti and H. Chaimovich, J. Phys. Chem., 84, 361 (1980).CrossRefGoogle Scholar
  42. 42.
    D. Zanette, F.H. Quina and H. Chaimovich, unpublished results.Google Scholar
  43. 43.
    J.W. Larsen and L.J. Magid, J. Amer. Chem. Soc., 97, 1988 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Hernan Chaimovich
    • 1
  • Regina M. V. Aleixo
    • 1
  • Iolanda M. Cuccovia
    • 1
  • Dino Zanette
    • 1
  • Frank H. Quina
    • 1
  1. 1.Group for Interfacial Studies (GIST) Instituto de QuímicaUniversidade de São PauloBrasil

Personalised recommendations