Advertisement

Fluorescence Probes of Micellar Systems—An Overview

  • Lawrence A. Singer

Abstract

The photophysical background of luminescence probes is described. In general, abrupt changes in the fluorescence spectrum or yield of polar probes with added surfactant lead to estimates of the critical micelle concentration (CMC) of micelles. However, such studies are complicated by the often encountered polar probe-surfactant interactions below the CMC’s. Non-polar arenes tend to partition almost completely into micelles with exit rates smaller (<106 s-1) than their fluorescence decay rates (107 − 109 s-1). The fluorescence decay of naphthalene is a composite of fluorescences from probes solubilized in both aqueous and micellar microenvironments. The fluorescence decay from nonpolar arenes in ionic micelles is sensitive to molecular oxygen and counterion quenching. In general, the attractive and repulsive interactions between ionic micelles and charged quenchers strongly mediate the fluorescence quenching of micelle-solubilized probes. The exact location of the latter within the micelle structure is still not resolved.

Keywords

Sodium Dodecyl Sulfate Critical Micelle Concentration Fluorescence Probe Fluorescence Lifetime Fluorescence Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. M. Menger, Accounts Chem. Res., 12, 111 (1979).CrossRefGoogle Scholar
  2. 2.
    S. Udenfriend, “Fluorescence Assay in Biology and Medicine”, Academic Press, New York, N.Y., 1962.Google Scholar
  3. 3.
    G. M. Edelman and W. O. McClure, Accounts Chem. Res., 1, 65 (1968) and references therein.CrossRefGoogle Scholar
  4. 4.
    R. A. Badley in “Modern Fluorescence Spectroscopy”, E. L. Wehry ed., Plenum Press, New York, N.Y., 1976.Google Scholar
  5. 5.
    “1980 Laser Focus Buyers’ Guide, 15th Edition”, Advanced Technology Publications, Inc., Newton, MA, 1980.Google Scholar
  6. 6.
    M. Kasha, Disc. Faraday Soc., 9, 14 (1950).CrossRefGoogle Scholar
  7. 7.
    N. J. Turro, “Modern Molecular Photochemistry”, Benjamin/ Cummins Publishing Co., Menlo Park, CA, 1978, p. 296.Google Scholar
  8. 8.
    C. A. Parker, “Photoluminescense of Solutions”, Elsevier, New York, N.Y., 1968.Google Scholar
  9. 9.
    J. N. Demas and G. A. Crosby, J. Phys. Chem., 75, 991 (1971).CrossRefGoogle Scholar
  10. 10.
    J. N. Demas, J. Chem. Ed., 53, 657 (1976).CrossRefGoogle Scholar
  11. 11.
    K. Kalyanasundaram, F. Grieser, and J. K. Thomas, Chem. Phys. Letters, 51, 501 (1977).CrossRefGoogle Scholar
  12. 12.
    R. Humphry-Baker, Y. Moroi, and M. Gratzel, Chem. Phys. Letters, 58, 207 (1978).CrossRefGoogle Scholar
  13. 13.
    P. Mukerjee and K. J. Mysels, J. Am. Chem. Soc., 77, 2937 (1955).CrossRefGoogle Scholar
  14. 14.
    B. H. Robinson, N. C. White, C. Mateo, K. J. Timmins, and A. James in “Chemical and Biological Applications of Relaxation Spectrometry”, Wyn-Jones, Editor, D. Reidel Publishing Co., Dordrecht, Holland, 1975, p 201.Google Scholar
  15. 15.
    G. A. Davis, J. Am. Chem. Soc., 94, 5098 (1972).CrossRefGoogle Scholar
  16. 16.
    K. S. Birdi, T. Krag, and J. Klausen, J. Colloid Interface Sci. 62, 562 (1977).CrossRefGoogle Scholar
  17. 17.
    R. C. Mast and L. V. Haynes, J. Colloid Interface Sci., 53, 35 (1975).CrossRefGoogle Scholar
  18. 18.
    N. E. Schore and N. J. Turro, J. Am. Chem. Soc., 96, 306 (1974)CrossRefGoogle Scholar
  19. 19.
    N. E. Schore and N. J. Turro, J. Am. Chem. Soc., 97, 2488 (1975).CrossRefGoogle Scholar
  20. 20.
    K. Kalyanasundaram and J. K. Thomas, J. Phys. Chem., 81, 2176 (1977).CrossRefGoogle Scholar
  21. 21.
    J. C. Dederen, L. Coosemans, F. C. De Schryver, and A. Van Dormael, Photochem. Photobiol., 30, 443 (1979).CrossRefGoogle Scholar
  22. 22.
    M. J. Minch and S. Sadiq Shah, J. Org. Chem., 44, 3252 (1979).CrossRefGoogle Scholar
  23. 23.
    S. S. Atik and L. A. Singer, J. Am. Chem. Soc., 101, 5696 (1979).CrossRefGoogle Scholar
  24. 24.
    S. S. Atik and L. A. Singer, J. Am. Chem. Soc., 101, 6759 (1979).CrossRefGoogle Scholar
  25. 25.
    M. Almgren, F. Grieser, and J. K. Thomas, J. Am. Chem. Soc., 101, 279 (1979).CrossRefGoogle Scholar
  26. 26.
    R. R. Hautala, N. E. Schore, and N. J. Turro, J. Am. Chem. Soc. 95, 5508 (1973).CrossRefGoogle Scholar
  27. 27.
    M. Van Bockstaele, J. Gelan, H. Martens, J. Put., J. C. Dederen, N. Boens, and F. C. De Schryver, Chem. Phys. Letters, 58, 211 (1978).CrossRefGoogle Scholar
  28. 28.
    M. W. Geiger and N. J. Turro, Photochem. and Photobiol., 22, 273 (1975).CrossRefGoogle Scholar
  29. 29.
    K. Kalyanasundaram and J. K. Thomas, J. Am. Chem. Soc., 99, 2039 (1977).CrossRefGoogle Scholar
  30. 30.
    N. J. Turro, M. Aikawa, and A. Yelta, Chem. Phys. Letters, 64, 473 (1979).CrossRefGoogle Scholar
  31. 31.
    F. B. Matheson and A. D. King, J. Colloid Interface Sci., 66, 46 (1978).CrossRefGoogle Scholar
  32. 32.
    W. R. Ware, J. Phys. Chem., 66, 455 (1962).CrossRefGoogle Scholar
  33. 33.
    H. J. Pownall and L. C. Smith, Biochemistry, 13, 2594 (1974).PubMedCrossRefGoogle Scholar
  34. 34.
    F. H. Quina and V. G. Toscano, J. Phys. Chem., 81, 1750 (1977).CrossRefGoogle Scholar
  35. 35.
    S. S. Atik and L. A. Singer, J. Am. Chem. Soc., 100, 3234 (1978).CrossRefGoogle Scholar
  36. 36.
    J. K. Thomas, Accounts Chem. Res., 10, 133 (1977).CrossRefGoogle Scholar
  37. 37.
    Y. Moroi, A. M. Braun, and M. Gratzel, J. Am. Chem. Soc., 101, 567 (1979).CrossRefGoogle Scholar
  38. 38.
    Y. Moroi, P. P. Infelta, and M. Gratzel, J. Am. Chem. Soc., 101, 573 (1979).CrossRefGoogle Scholar
  39. 39.
    P.-A. Brugger and M. Gratzel, J. Am. Chem. Soc., 102, 2461 (1980).CrossRefGoogle Scholar
  40. 40.
    K. Kalyanasundaram and M. Gratzel, Angew. Chemie, 41, 759 (1979).CrossRefGoogle Scholar
  41. 41.
    M. Gratzel and J. K. Thomas, J. Am. Chem. Soc., 95, 6885 (1973).CrossRefGoogle Scholar
  42. 42.
    M. A. J. Rodgers and M. E. Da Silva e Wheeler, Chem. Phys. Letters, 43, 587 (1976).CrossRefGoogle Scholar
  43. 43.
    L. K. Patterson and E. Vieil, J. Phys. Chem., 77, 1191 (1973).CrossRefGoogle Scholar
  44. 44.
    M. N. Jones and D. A. Reed, Kolloid-Z., 235, 1196 (1970).Google Scholar
  45. 45.
    S. J. Rehfield, J. Phys. Chem., 75, 3905 (1971).CrossRefGoogle Scholar
  46. 46.
    J. H. Fendler and L. K. Patterson, J. Phys. Chem., 75, 3907 (1971).CrossRefGoogle Scholar
  47. 47.
    J. C. Ericksson and G. Gillberg, Acta. Chem. Scand., 20, 2019 (1966).CrossRefGoogle Scholar
  48. 48.
    J. H. Fendler and L. K. Patterson, J. Phys. Chem., 74, 4608 (1970).CrossRefGoogle Scholar
  49. 49.
    P. Mukerjee, J. R. Cardinal, and N. R. Desai in “Micellization, Solubilization, and Microemulsions”, K. L. Mittal, Editor, Plenum Press, New York, N.Y., 1977, p. 241.Google Scholar
  50. 50.
    M. Shinitzky, A.-C. Dianoux, C. Gitler, and G. Weber, Biochemistry, 10, 2106 (1971).PubMedCrossRefGoogle Scholar
  51. 51.
    R. Humphry-Baker, M. Gratzel, and R. Steiger, J. Am. Chem. Soc., 102, 847 (1980).CrossRefGoogle Scholar
  52. 52.
    R. C. Dorrance, T. F. Hunter, and J. Philp, J.C.S. Faraday II, 73, 89 (1977).CrossRefGoogle Scholar
  53. 53.
    R. C. Dorrance and T. F. Hunter, J.C.S. Faraday I, 68, 1312 (1972).CrossRefGoogle Scholar
  54. 54.
    R. C. Dorrance and R. F. Hunter, J.C.S. Faraday I, 70, 1572 (1974).CrossRefGoogle Scholar
  55. 55.
    J. B. Birks, “Photophysics of Aromatic Molecules”, Wiley-Interscience, New York, N.Y., 1970, p. 301.Google Scholar
  56. 56.
    K. A. Zachariasse, Chem. Phys. Letters, 57, 429 (1978).CrossRefGoogle Scholar
  57. 57.
    J. Emert, C. Behrens, and M. Goldenberg, J. Am. Chem. Soc., 101, 771 (1979).CrossRefGoogle Scholar
  58. 58.
    N. J. Turro, M. Aikawa, and A. Yekta, J. Am. Chem. Soc., 101, 772 (1979).CrossRefGoogle Scholar
  59. 59.
    M. Tachiya, Chem. Phys. Letters, 33, 289 (1975).CrossRefGoogle Scholar
  60. 60.
    M. A. J. Rogers and M. E. Da Silva e Wheeler, Chem. Phys. Letters, 53, 165 (1978).CrossRefGoogle Scholar
  61. 61.
    B. K. Selinger and A. R. Watkins, Chem. Phys. Letters, 56, 99 (1978).CrossRefGoogle Scholar
  62. 62.
    S. S. Atik and L. A. Singer, Chem. Phys. Letters, 59, 519 (1978).CrossRefGoogle Scholar
  63. 63.
    A. Henglein and R. Scheerer, Ber. Bunsenges. Physik. Chem., 82, 1107 (1978).Google Scholar
  64. 64.
    P. P. Infelta and M. Gratzel, J. Chem. Phys., 70, 179 (1979).CrossRefGoogle Scholar
  65. 65.
    P. P. Infelta, Chem. Phys. Letters, 61, 88 (1979).CrossRefGoogle Scholar
  66. 66.
    A. Yekta, M. Aikawa, and N. J. Turro, Chem. Phys. Letters, 63, 543 (1979).CrossRefGoogle Scholar
  67. 67.
    G. Rothenberger, P. P. Infelta, and M. Gratzel, J. Phys. Chem., 83, 1871 (1979).CrossRefGoogle Scholar
  68. 68.
    S. S. Atik, and L. A. Singer, Chem. Phys. Letters, 66, 234 (1979).CrossRefGoogle Scholar
  69. 69.
    S. S. Atik, M. Nam, and L. A. Singer, Chem. Phys. Letters, 67, 75 (1979).CrossRefGoogle Scholar
  70. 70.
    S. S. Atik, Unpublished results.Google Scholar
  71. 71.
    C. L. Kwan, S. Atik, and L. A. Singer, J. Am. Chem. Soc., 100, 4783 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Lawrence A. Singer
    • 1
  1. 1.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations