Skip to main content

Thermodynamic Properties of Binary and Ternary Aqueous Surfactant Systems

  • Chapter

Abstract

We have made measurements by flow calorimetry and flow densimetry that have led to apparent and partial molar heat capacities and also apparent and partial molar volumes of aqueous solutions of surfactants (cationic, anionic, and non-ionic) at concentrations both smaller and larger than the critical micelle concentrations. Results of these measurements lead to independent determinations of the critical micelle concentrations and also permit evaluations of ΔCp and ΔV values for micelle formation. All such ΔV values are positive, while all ΔCp values are negative. We have also made similar measurements of heat capacities and densities on solutions of p-xylene, octane, and decanol in surfactant solutions in an effort to gather information that will ultimately improve our understanding of solubilization. Some exploratory measurements of enthalpies of solution have also been made on these same three component systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. L. Mittal, Editor, “Micellization, Solubilization, and Microemulsions,” Vol. 1, Plenum Press, New York, 1977.

    Google Scholar 

  2. K. L. Mittal, Editor, “Solution Chemistry of Surfactants,” Vol. 1, Plenum Press, New York, 1979.

    Google Scholar 

  3. P. Ekwall and P. Stenius, in “Surface Chemistry and Colloids,” M. Kerker, Editor, International Review of Science, Physical Chemistry, Series 2, Vol. 7, p. 215, Butterworths, London, 1975.

    Google Scholar 

  4. C. Tanford, “The Hydrophobic Effect: Formation of Micelles and Biological Membranes,” John Wiley & Sons, New York, 1973.

    Google Scholar 

  5. G. C. Kresheck, in “Water: A Comprehensive Treatise,” F. Franks, Editor, Vol. 4, Chapter 2, Plenum Press, New York, 1975.

    Google Scholar 

  6. N. Muller, In ref. 1, pp. 229–239.

    Google Scholar 

  7. J. B. Rosenholm, T. E. Burchfield, and L. G. Hepler, J. Colloid Interface Sei. In press.

    Google Scholar 

  8. G. Pilcher, M. N. Jones, L. Espada, and H. A. Skinner, J. Chem. Thermodynamics, 1, 381 (1969).

    Article  Google Scholar 

  9. L. Espada, M. N. Jones, and G. Pilcher, J. Chem. Thermodynamics, 2, 1 (1970).

    Article  Google Scholar 

  10. M. N. Jones, G. Pilcher, and L. Espada, J. Chem. Thermodynamics, 2, 333 (1970).

    Article  Google Scholar 

  11. H. Kishimoto and K. Sumida, Chem. Pharm. Bull., 22, 1108 (1974).

    Google Scholar 

  12. S. Paredes, M. Tribout, J. Ferreira, and J. Leonis, Colloid Polymer Sci., 254, 637 (1976).

    Article  Google Scholar 

  13. G. M. Musbally, G. Perron, and J. E. Desnoyers, J.Colloid Interface Sci., 48, 494 (1974).

    Article  Google Scholar 

  14. G. M. Musbally, G. Perron, and J. E. Desnoyers, J. Colloid Interface Sei., 54, 80 (1976).

    Article  Google Scholar 

  15. R. De Lisi, C. Ostiguy, G. Perron, and J. E. Desnoyers, J. Colloid Interface Sei., 71,, 147 (1979).

    Article  Google Scholar 

  16. J. E. Desnoyers, R. De Lisi, C. Ostiguy, and G. Perron, In ref. 2, pp. 221–245.

    Google Scholar 

  17. S. D. Hamann, J. Phys. Chem., 66, 1959 (1962).

    Article  Google Scholar 

  18. M. Tanaka, S. Kaneshina, T. Toniida, K. Nöda, and K. Aoki, J. Colloid Interface Sei., 44, 525 (1973).

    Article  Google Scholar 

  19. M. Tanaka, S. Kaneshina, K. Shin-No, T. Akajima, and T. Tomida, J. Colloid Interface Sei., 46, 132 (1974).

    Article  Google Scholar 

  20. S. Kaneschina, M. Tanaka, T. Tomida, and R. Matuura, J. Colloid Interface Sei., 48, 432 (1975).

    Google Scholar 

  21. M. Tanaka, S. Kaneshina, S. Kuramoto, and R. Matuura, Bull. Chem. Soc. Japan, 48, 432 (1975).

    Article  Google Scholar 

  22. L. Benjamin, J. Phys. Chem., 70, 3790 (1966).

    Article  Google Scholar 

  23. T. S. Brun, H. HØiland, and E. Vikingstad, J. Colloid Interface Sei., 63, 89 (1978).

    Article  Google Scholar 

  24. E. Vikingstad, A. Skauge, and H. Heiland, J. Colloid Interface Sei., 72, 59 (1979).

    Article  Google Scholar 

  25. S. Harada and T. Nakagawa, J. Solution Chem., 8, 267 (1979).

    Article  Google Scholar 

  26. E. Vikingstad and H. Heiland, J. Colloid Interface Sei., 64, 510 (1978).

    Article  Google Scholar 

  27. E. Vikingstad, J. Colloid Interface Scio, 68, 287 (1979).

    Article  Google Scholar 

  28. E. Vikingstad, J. Colloid Interface Sei., 72, 75 (1979).

    Article  Google Scholar 

  29. P. Picker, P.-A. Leduc, P. R. Philip, and J. E. Desnoyers, J. Chem. Thermodynamics, 3, 631 (1971).

    Article  Google Scholar 

  30. J.-L. Fortier, P.-A. Leduc, and J. E. Desnoyers, J. Solution Chem., 3, 323 (1974).

    Article  Google Scholar 

  31. G. Perron, J.-L. Fortier, and J. E. Desnoyers, J. Chem. Thermodynamics, 1, 1177 (1975).

    Article  Google Scholar 

  32. J. E. Desnoyers, C. De Visser, G. Perron, and P. Picker, J. Solution Chem., 5, 605 (1976).

    Article  Google Scholar 

  33. P. Picker, E. Tremblay, and C. Jolicoeur, J. Solution Chem., 3, 377 (1974).

    Article  Google Scholar 

  34. G. J. Ewin, B. P. Erno, and L. G. Hepler, Manuscript in preparation.

    Google Scholar 

  35. F. J. Millero, in “Water and Aqueous Solutions: Structure, Thermodynamics, and Transport Processes,” R. A. Horne, Editor, Chapter 13, Wiley-Interscience, New York, 1972.

    Google Scholar 

  36. P. R. Philip and J. E. Desnoyers, J. Solution Chem., 1, 353 (1972).

    Article  Google Scholar 

  37. P.-A. Leduc, J.-L. Fortier, and J. E. Desnoyers, J. Phys. Chem., 78, 1217 (1974).

    Article  Google Scholar 

  38. J. J. Spitzer, I. V. Olofsson, P. P. Singh, and L. G. Hepler, Can. J. Chem., 57, 2798 (1979).

    Article  Google Scholar 

  39. D. J. Bradley and K. S. Pitzer, J. Phys. Chem., 83, 1599 (1979).

    Article  Google Scholar 

  40. T. F. Young and O. G. Vogel, J. Am. Chem. Soc., 54, 3025 (1932).

    Article  Google Scholar 

  41. P. Mukerjee and K. J. Mysels, “Critical Micelle Concentrations of Aqueous Surfactant Systems,” NSRDS-NBS 36, U. S. Gov’t. Printing Office, Washington, 1971.

    Google Scholar 

  42. P.-A. Leduc and J. E. Desnoyers, Can. J. Chem., 51, 2993 (1973).

    Article  Google Scholar 

  43. O. Enea, C. Jolicoeur, and L. G. Hepler, Can. J. Chem., 58, 704 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Rosenholm, J.B., Grigg, R.B., Hepler, L.G. (1982). Thermodynamic Properties of Binary and Ternary Aqueous Surfactant Systems. In: Mittal, K.L., Fendler, E.J. (eds) Solution Behavior of Surfactants. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3491-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3491-0_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3493-4

  • Online ISBN: 978-1-4613-3491-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics