Low Level and High Level DNA Rearrangements in Escherichiacoli

  • Ahmad I. Bukhari
  • Hajra Khatoon

Summary

It can be argued that all organisms exhibit two levels of DNA rearrangements. At a low level they may occur sporadically in cells, perhaps largely because of spontaneous activity of transposable genetic elements. A high level may be induced in special circumstances if functions that cause rearrangements are hyperactive. As an example of low level genetic rearrangements, we have studied the occurrence of spontaneous polar mutations in the early regions of prophage Mu. We isolated 49 independent prophage mutants, which are defective in replication and expression of late genes; 44 were in the B region and 5 were in the A region. In the B region, 68% were IS1 insertions, 9% were IS5 insertions and 9% were IS2 insertions; 14% showed no insertion. In the A region, all 5 were IS5 insertions. Thus most spontaneous polar mutations in Escherichia coli appear to be insertions. IS1 is the most common insertion; however, certain DNA regions may show preference for a specific element. High level DNA rearrangements are exemplified by DNA fusion and DNA dissociation that occur when replication-transposition functions of Mu are induced.

Keywords

Maize Phenol Mercury Recombination Explosive 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berg, D. E., Egner, C., Hirschel, B. J., Howard, J., Johnsrud, L., Jorgensen, R. A., and Tisty, T. D., 1981, Insertion, excision and inversion of Tn5), Cold Spring Harbor Symp. Quant. Biol., XLV: 115.Google Scholar
  2. Biek, D., and Roth, J. R., 1981, Regulation of Tn5 transposition, Cold Spring Harbor Symp. Quant. Biol., XLV: 189.Google Scholar
  3. Bukhari, A. I., 1975, Reversal of mutator phage Mu integration, J. Mol. Biol., 96:87.PubMedCrossRefGoogle Scholar
  4. Bukhari, A. I., Froshauer, S., and Botchan, M., 1976, The ends of bacteriophage Mu DNA, Nature, 264: 580.PubMedCrossRefGoogle Scholar
  5. Bukhari, A. I., Shapiro, J., and Adhya, S., 1977, “DNA Insertion Elements, Plasmids, and Episomes,” Cold Spring Harbor Laboratory, New York.Google Scholar
  6. Bukhari, A. I., and Taylor, A. L., 1975, Influence of insertions on packaging of host sequences covalently linked to bacteriophage Mu DNA, Proc. Natl. Acad. Sci. U.S.A., 72: 4399.Google Scholar
  7. Calos, M. P., and Miller, J. H., 1980, Transposable elements, Cell, 20: 579.PubMedCrossRefGoogle Scholar
  8. Casadaban, M. J., Chou, J., Lemaux, P., Tu, C.-P. D., and Cohen, S. N., 1981, Tn3: Transposition and control, Cold Spring Harbor Symp. Quant. Biol., XLV: 269.Google Scholar
  9. Cold Spring Harbor Symposium on Quantitative Biology, 1981, “Movable Genetic Elements,” Vol. XLV, Cold Spring Harbor Laboratory, New York.Google Scholar
  10. Fink, G., Farabaugh, P., Roder, G., and Chaleff, D., 1981, Transposable elements (ty) in yeast, Cold Spring Harbor Symp. Quant. Biol., XLV: 575.Google Scholar
  11. Harshey, R. M., and Bukhari, A. I., 1981, A mechanism of DNA transposition, Proc. Natl. Acad. Sci. U.S.A., 78:1090.PubMedCrossRefGoogle Scholar
  12. Heffron, F., Kostriken, R., Morita, C., and Parker, R., 1981, Tn3 encodes a site-specific recombination system: Identification of essential sequences, genes and the actual site of recombination, Cold Spring Harbor Symp. Quant. Biol., XLV: 259.Google Scholar
  13. Khatoon, H., and Bukhari, A. I., 1981, DNA rearrangements associated with reversion of bacteriophage Mu induced mutations, Genetics, 98: 1.PubMedGoogle Scholar
  14. Klaer, R., Kuhn, S., Fritz, J.-J., Tillmann, E., Saint-Girons, I., Habermann, P., Pfeifer, D., and Starlinger, P., 1981, Studies on transposition mechanisms and specificity of IS4, Cold Spring Harbor Symp, Quant. Biol., XLV: 215.Google Scholar
  15. Kleckner, N., 1977, Translocatable elements in procaryotes, Cell, 11: 11.PubMedCrossRefGoogle Scholar
  16. McClintock, B., 1975, The control of gene action in maize, Brookhaven Symp. Biol., 18: 162.Google Scholar
  17. Nyman, K., Nakamura, K., Ohtsubo, H., and Ohtsubo, E., 1981, Distribution of the insertion sequence IS1 in gram-negative bacteria, Nature, 289: 609.PubMedCrossRefGoogle Scholar
  18. Rubin, G. M., Brorein, W. J., Jr., Dunsmuir, P., Flavell, A. J., Levis, R., Strobel, E., Toole, J. J., and Young, E., 1981, Copia-like transposable elements in the Drosophila genome, Cold Spring Harbor Symp. Quant. Biol., XLV: 619.Google Scholar
  19. Shapiro, J. A., 1979, Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements, Proc. Natl. Acad. Sci. U.S.A., 76: 1933.Google Scholar
  20. Sherratt, D., Arthur, A., and Burke, M., 1981, Transposon-specified, site-specific recombination systems, Cold Spring Harbor Symp. Quant. Biol., XLV: 275.Google Scholar
  21. Toussaint, A., Faelen, M., and Bukhari, A. I., 1977, Mu-mediated illegitimate recombination as an integral part of the Mu life cycle, in: “DNA Insertion Elements, Plasmids, and Episomes,” ( A. I. Bukhari, J. Shapiro, and S, Adhya, eds., Cold Spring Harbor Laboratory, New York.Google Scholar
  22. van de Putte, P., Giphart-Gassler, M., Goosen, N., Goosen, T., and van Leerdam, E., 1981, Regulation of integration and replication functions of bacteriophage Mu, Cold Spring Harbor Symp. Quant. Biol., XLV: 347.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Ahmad I. Bukhari
    • 1
  • Hajra Khatoon
    • 1
  1. 1.Cold Spring Harbor LaboratoryCold Spring HarborUSA

Personalised recommendations