Skip to main content

Concepts of Charge Density Analysis: The Experimental Approach

  • Chapter
Electron Distributions and the Chemical Bond

Abstract

Though the potential for deriving electron distributions from elastic diffraction data was recognized in the decade following Von Laue’s discovery of X-ray diffraction, its practical application was delayed by many unrecognized problems of both experimental and theoretical nature. Only with the advent of four-circle diffractometers and high-speed computing could sufficiently accurate data be collected, corrected for physical effects like extinction, absorption and thermal diffuse scattering, and interpreted with a scattering factor formalism based on a more realistic description of bonded atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Feil, Isr. J. of Chem. 16:103 (1977).

    CAS  Google Scholar 

  2. M. S. Lehmann and P. Coppens, Acta Chem. Scand. A31:530 (1977).

    Article  Google Scholar 

  3. D. Sherwood, Crystals, X-rays and Proteins, John Wiley, New York, p. 342.

    Google Scholar 

  4. P. Coppens and C. A. Coulson, Acta Cryst. A23:718 (1967).

    Article  Google Scholar 

  5. J. W. Bats, P. Coppens and T. F. Koetzle, Acta Cryst. B33:37 (1977).

    CAS  Google Scholar 

  6. P. Coppens, T. N. Guru Row, P. Leung, E. D. Stevens, P. J. Becker, and Y. W. Yang, Acta Cryst. A35;63 (1979).

    CAS  Google Scholar 

  7. C. A. Coulson “Valence” Oxford University Press, Oxford (1961).

    Google Scholar 

  8. B. Dawson, Proc. Roy. Soc. (London) A298:255 (1967).

    Google Scholar 

  9. R. F. Stewart, J. Chem. Phys. 51:4569 (1969).

    Article  CAS  Google Scholar 

  10. F. L. Hirshfeld, Isr. J. of Chem. 16:226 (1977).

    CAS  Google Scholar 

  11. R. F. Stewart Nato Adv. Study Inst. Series B48:439 (1977).

    Google Scholar 

  12. N. K. Hansen and P. Coppens, Acta Cryst. A34:909 (1978).

    CAS  Google Scholar 

  13. J. Bentley and R. F. Stewart, J. Comp. Physics 11, 127 (1973).

    Article  Google Scholar 

  14. R. F. Stewart, J. Bentley and B. Goodman, J. Chem. Phys. 63:3786 (1975).

    Article  CAS  Google Scholar 

  15. D. S. Jones, D. Pautler and P. Coppens, Acta Cryst. A28:635 (1972).

    Google Scholar 

  16. E. Hellner, Acta Cryst. B33:3813 (1977).

    CAS  Google Scholar 

  17. M. Bonnet, A. Delapalme, P. Becker and H. Fuess, J. Magn. and Magn. Materials 7:23 (1978).

    Article  Google Scholar 

  18. P. Coppens and M. S. Lehmann Acta Cryst. B32:1777 (1976).

    CAS  Google Scholar 

  19. J.-M. Savariault and M. S. Lehmann J. Am. Chem. Soc. 102:1298 (1980).

    Article  CAS  Google Scholar 

  20. M. Benard, P. Coppens, M. L. DeLucia and E. D. Stevens, Inorg. Chem. 19:1924 (1980).

    Article  CAS  Google Scholar 

  21. M. Martin, B. Rees and A. Mitschler, Acta Cryst. B38:6 (1982).

    CAS  Google Scholar 

  22. W. Heijser, Ph.D. Thesis, Free University, Amsterdam, Holland, 1979.

    Google Scholar 

  23. P. Coppens, R. Boehme, P. Price and E. D. Stevens Acta Cryst. A37:857 (1981).

    CAS  Google Scholar 

  24. F. Baert, P. Coppens, E. D. Stevens and L. Devos, Acta Cryst. A38:143 (1982).

    CAS  Google Scholar 

  25. R. F. Stewart, Acta Cryst. A32:565 (1976).

    CAS  Google Scholar 

  26. F. L. Hirshfeld, Theor. Chim. Acta 44:129 (1977).

    Article  CAS  Google Scholar 

  27. P. Coppens and T. N. Guru Row, Ann. NY Acad. Sc. 313:244 (1978).

    Article  CAS  Google Scholar 

  28. J. L. Staudenmann, Ph.D. Thesis, University of Geneva, Switzerland (1975).

    Google Scholar 

  29. A. Holladay and P. Coppens, to be published.

    Google Scholar 

  30. B. Rees, Acta Cryst. A32:483 (1976).

    CAS  Google Scholar 

  31. E. D. Stevens and P. Coppens, Acta Cryst. A32:915 (1976).

    CAS  Google Scholar 

  32. B. Rees, Acta Cryst. A34:254 (1978).

    CAS  Google Scholar 

  33. M. S. Lehmann, Nato Adv. Study Inst. Series B48:355 (1979).

    Google Scholar 

  34. D.W.J. Cruickshank, Acta Cryst. 9:754 (1956).

    Article  CAS  Google Scholar 

  35. R. B. Helmholdt and A. Vos, Acta Cryst. A33:38 (1977).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Coppens, P. (1982). Concepts of Charge Density Analysis: The Experimental Approach. In: Coppens, P., Hall, M.B. (eds) Electron Distributions and the Chemical Bond. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3467-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3467-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3469-9

  • Online ISBN: 978-1-4613-3467-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics