Skip to main content

Benzene Metabolites: Evidence for an Epigenetic Mechanism of Toxicity

  • Chapter
Genotoxic Effects of Airborne Agents

Part of the book series: Environmental Science Research ((ESRH,volume 25))

Abstract

Benzene is the most widely recognized chemical of industrial importance which is associated with toxicity to the blood and blood forming organs. Occupational exposure produces a variety of blood dyscrasias ranging from transient leukopenia or lymphocytopenia to aplastic anemia (1,2). In recent years interest has focused on the association of chronic benzene exposure with increased risk of leukemia (3–5) or lymphoma (6–8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. L. J. Goldwater, Disturbances in the blood following exposure to benzol. J. Lab. Clin. Med. 26: 957–973 (1941).

    Google Scholar 

  2. S. Laskin, B. D. Goldstein, Benzene toxicity, a critical review. J. Toxicol. amp; Environ. Health Suppl. 2; 1–148 (1977).

    Google Scholar 

  3. M. Aksoy, K. Dincol, S. Erdem, G. Dincol, Acute leukemia due to chronic exposure to benzene. Am. J. Med. 52: 160–166 (1972).

    Article  Google Scholar 

  4. M. Aksoy, S. Erdem and G. Dincol, Types of leukemia in chronic benzene poisoning. A study in thirty-four patients. Acta Haematol. 55: 65–72 (1976).

    Article  Google Scholar 

  5. E. C. Vigliani and A. Forni, Benzene and leukemia. Environ. Research 11: 122–127 (1976).

    Article  ADS  Google Scholar 

  6. J. Bousser, R. Neydé, A. Fabre, Un case d’hémopathie benzolique trés retardeé à type de lymphosarcomatose. Bull. Soc. Medicale des Hopitaux de Paris 3: 1000–1004 (1947).

    Google Scholar 

  7. I. R. Tabershaw, W. C. Cooper, A mortality study of petroleum refinery workers. American Petroleum Institute. Medical Research Report #EA 7402. Sept. 15 (1974).

    Google Scholar 

  8. M. Aksoy, S. Erdem, K. Dincol, T. Hepyüksel, G. Dincol, Chronic exposure to benzene as a possible contributory etiologic factor in Hodgkin’s Disease. Blut 28: 293–298 (1974).

    Article  Google Scholar 

  9. R. D. Irons, H. d’A. Heck, B. J. Moore, K. A. Muirhead, Effects of short-term benzene administration on rat bone marrow cell cycle kinetics in the rat. Toxicol. amp; Appl. Pharmacol. 51: 399–409 (1979).

    Google Scholar 

  10. R. D. Irons, Benzene-induced myelotoxicity: Application of flow cytofluorometry for the evaluation of early proliferative change in bone marrow. Environmental Health Perspect. In press (1981).

    Google Scholar 

  11. R. D. Irons, B. J. Moore, Effect of short term benzene administration on circulating lymphocyte subpopulations in the rabbit: evidence of a selective B-lymphocyte sensitivity. Res. Comm. Chem. Path. Pharmacol. 27: 147–155 (1980).

    Google Scholar 

  12. D. Wierda, W. F. Greenlee, R. D. Irons, Immunotoxicity of benzene metabolites in C57BL/6 mice. The Pharmacologist 22:260 Abstract (1980).

    Google Scholar 

  13. K. A. Muirhead, R. D. Irons, R. Bruns, P. K. Horan, A rabbit bone marrow model system for the evaluation of cytotoxicity: Characterization of normal bone marrow cell cycle parameters by flow cytometry. J. Histochem. Cytochem. 28: 526–532 (1980).

    Article  Google Scholar 

  14. S. Moeschlin, B. Speck, Experimental studies on the mechanism of action of benzene on the bone marrow (radioauto- graphic studies using 3H-thymidine). Acta Haematol. 38: 104–111 (1967).

    Article  Google Scholar 

  15. R. Tice, D. L. Costa, R. T. Drew, Cytogenetic effects of inhaled benzene in murine bone marrow: Induction of sister chromatid exchanges, chromosomal aberrations, and cellular proliferation inhibition in DBA/2 mice. Proc. Natl. Acad. Sci. USA. 77: 2148–2152 (1980).

    Article  ADS  Google Scholar 

  16. L. M. Gonasun, C. Witmer, J. J. Kocsis, R. Snyder, Benzene metabolism in mouse liver microsomes. Toxicol. amp; Applied Pharmacol. 26: 398–406 (1973).

    Article  Google Scholar 

  17. R. Snyder and J. L. Kocsis, Current concepts of chronic benzene toxicity. CRC Critical Reviews in Toxicology, June, 265–288 (1975).

    Google Scholar 

  18. A. Tunek, K. L. Piatt, P. Bentley,, F. Oesch, Microsomal metabolism of benzene to species irreversibly binding to microsomal protein and effects of modifications of this metabolism, Molec. Pharmacol. 14: 920–929 (1978).

    Google Scholar 

  19. D. E. Rickert, T. S. Baker, J. S. Bus, C. S. Barrow, R. D. Irons, Benzene disposition in the rat after exposure by inhalation. Toxicol. amp; Appl. Pharmacol. 48: 417–423 (1979).

    Article  Google Scholar 

  20. R. D. Irons, J. G. Dent, T. S. Baker, D. E. Rickert, Benzene is metabolized and covalently bound in bone marrow in situ. Chem.-Biol. Interact. 30: 241–245 (1980).

    Article  Google Scholar 

  21. R. D. Irons, W. F. Greenlee, D. Wierda , J. S. Bus, Relationship between benzene metabolism and toxicity: A proposed mechanism for the formation of reactive intermediates from polyphenol metabolites, in: Biological Reactive Intermediates II, R. Snyder, D. V. Parke, J. J. Kocsis , D. A. Jollow, eds., Plenum Press, in press, (1981).

    Google Scholar 

  22. W. F. Greenlee, R. D. Irons, Modulation of benzene-inducedlymphocytopenia in the rat by 2,4,5,2’,4’,5’-hexachloro- biphenyl and 3,4,3’,4’-tetrachlorobiphenyl. Chem.-Biol. Interact. In Press (1981).

    Google Scholar 

  23. W. F. Greenlee, E. A. Gross, R. D. Irons, A study of the disposition of 14C-labelled phenol, catechol and hydroquinone in the rat using whole body autoradiography. Chem.-Biol. Interact. In Press (1981).

    Google Scholar 

  24. D. Wierda, R. D. Irons, Reduction of progenitor B-lymphocytes in mice after hydroquinone and catechol administration. Fed. Proc. Abstract (1981).

    Google Scholar 

  25. R. W. Pfeifer, R. D. Irons, Inhibition of PHA-stimulated mito-genesis by benzene metabolites: Protection with sulfhydryl compounds. Toxicol. amp; Appl. Pharmacol. Abstract. (1981).

    Google Scholar 

  26. W. F. Greenlee, J. S. Bus, A proposed mechanism for benzene toxicity: Formation of reactive intermediates from polyphenol metabolities of benzene. The Pharmacologist 22:229. Abstract. (1980).

    Google Scholar 

  27. H. J. Wedner, C. W. Parker, Lymphocyte activation. Prog. Allergy 20: 195–300 (1976).

    Article  Google Scholar 

  28. N. R. Ling, J. E. Kay, The mechanism of lymphocyte activation — Metabolic changes during lymphocyte stimulation, in: “Lymphocyte Stimulation,” N. R. Ling, J. E. Kay, eds., Amsterdam, 253–355 (1975).

    Google Scholar 

  29. G. M. Edelman, Surface alterations and mitogenesis in lymphocytes, in: “Control of Proliferation in Animal Cells, ” B. Clarkson, R. Baserga, eds., Cold Spring Harbor Laboratories, Cold Spring Harbor, NY, 357–377 (1973).

    Google Scholar 

  30. G. R. Gunther, J. L. Wang, G. M. Edelman, Kinetics of colchicine inhibition of mitogenesis in individual lymphocytes. Exp. Cell Res. 98: 15–22. (1976).

    Article  Google Scholar 

  31. J. L. Wang, G. R. Gunther, G. M. Edelman, Inhibition by colchicine of the mitogenic stimulation of lymphocytes prior to the S phase. J. Cell Biol. 66: 128–144 (1975).

    Article  Google Scholar 

  32. W. C. Greene, C. M. Parker, C. W. Parker, Colchicine-sensitive structures and lymphocyte activation. J. Immunol. 117: 1015–1022 (1976).

    Google Scholar 

  33. M. Yoshinaga, A. Yoshinaga and B. H. Waksman, Regulation of lymphocyte response in vitro: potentiation and inhibition of rat lymphocyte responses to antigen and mitogens by cytochalasin B. Proc. Natl. Acad. Sci. USA 69: 3251–3255 (1972).

    Article  ADS  Google Scholar 

  34. M. Ono and M. Hozumi, Effect of cytochalasin B on lymphocyte stimulation induced by concanavalin A or periodate. Biochem. Biophys. Res. Comm. 53: 342–349 (1973).

    Article  Google Scholar 

  35. M. Suthanthiran, K. H. Stenzel, A. L. Rubin, A. Novogrodsky, Augmentation of proliferation and generation of specific cytotoxic cells in human mixed lymphocyte culture reactions by colchicine. Cell. Immunol. 50: 379–391 (1980).

    Article  Google Scholar 

  36. P. Sherline, G. R. Mundy, Role of the tubulin-microtubule system in lymphocyte activation. J. Cell Biol. 74: 371–376 (1977).

    Article  Google Scholar 

  37. G. M. Edelman, Surface modulation in cell recognition and cell growth. Science 192: 218–226 (1976).

    Article  ADS  Google Scholar 

  38. R. D. Berlin, T. E. Ukena, Effect of colchicine and vinblastine on the agglutination of polymorphonuclear leucocytes by concanavalin A. Nature New Biology 238: 120–122 (1972).

    Article  Google Scholar 

  39. G. I. Giordano, M. A. Lichtman, The role of sulfhydryl groups in human neutrophil adhesion, movement and particle ingestion. J. Cell Physiol. 82: 387–396 (1973).

    Article  Google Scholar 

  40. M. Tsan, B. Newman, P. A. Mclntyre, Surface sulphydryl groups and phagocytosis-associated oxidative metabolic changes in human polymorphonuclear leucocytes. Brit. J. Hemat. 33: 189–204 (1976).

    Article  Google Scholar 

  41. J. G. R. Elferink, J. C. Riemersa, Effects of sulfhydryl reagents on phagocytosis and exocytosis in rabbit polymor-phonuclear leukocytes. Chem.-Biol. Interact 30: 139–149 (1980).

    Article  Google Scholar 

  42. D. D. Chaplin, H. J. Wedner, Inhibition of lectin-induced lymphocyte activation by diamide and other sulfhydryl reagents. Cell Immunol. 36: 303–311 (1978).

    Article  Google Scholar 

  43. L. Sachs, M. Inbar, M. Shinitzky, Mobility of lectin sites on the surface membrance and the control of cell growth and differentiation, in: “Control of Proliferation in Animal Cells,” Cold Spring Harbor Laboratories, NY, 283–296 (1973).

    Google Scholar 

  44. D. Lagunoff, H. Wan, Inhibition of histamine release from rat mast cells by cytochalasin A and other sulfhydryl reagents. Biochem. Pharmacol. 28: 1765–1769 (1979).

    Article  Google Scholar 

  45. M. T. Mazur, J. R. Williamson, Macrophage deformability and phagocytosis. J. Cell Biol. 75: 185–199 (1977).

    Article  Google Scholar 

  46. N. Chakravarty, Z. Echetebu, Plasma membrane adenosine triphosphatases in rat peritoneal mast cells and macrophages - the relation of the mast cell enzyme to histamine release. Biochem. Pharmacol. 27: 1561–1569 (1978).

    Article  Google Scholar 

  47. A. Michael, Das chinon vom standpunkt des enteropiegesetzes und der partialvalenzhypothese. J. Prakt. Chem. 79: 418–431 (1909).

    Article  Google Scholar 

  48. M. Schubert, The interaction of thiols and quinones. J. Amer. Chem. Soc. 69: 712–713. (1947).

    Article  Google Scholar 

  49. R. H. Himes and L. L. Houston, The action of cytochalasin A on the in vitro polymerization of brain tubulin and muscle G-actin. J. Supramol. Struct. 5: 81–90 (1976).

    Article  Google Scholar 

  50. D. Lagunoff, The reaction of cytochalasin A with sulfhydryl groups. Biochem. Biophys. Res. Commun. 73: 727–732 (1976).

    Article  Google Scholar 

  51. R. P. Mason, Free radical metabolites of foreign compounds and their toxicological significance, in: “Reviews in Biochem. Toxicol.,” E. Hodgson, J. R. Bend, R. M. Philpot, eds., Elsevier, New York, NY, 151–200 (1979).

    Google Scholar 

  52. R. D. Irons, D. A. Neptun, Effects of the principal hydroxy-metabolites of benzene on microtubule polymerization. Arch. Toxicol. 45: 297–305 (1980).

    Article  Google Scholar 

  53. R. Kuriyama, H. Sakai, Role of tubulin-SH groups in polymerization to microtubules. J. Biochem. 76: 651–654 (1974).

    Google Scholar 

  54. L. Wilson, J. R. Bamburg, S. B. Mizel, L. M. Grisham, K. M. Creswell, Interaction of drugs with microtubule proteins. Fed. Proc. 33: 158–166 (1974).

    Google Scholar 

  55. Y. Ikeda, M. Steiner, Sulfhydryls of platelet tubulin: Their role in polymerization and colchicine binding. Biochem. 17: 3454–3459 (1978).

    Article  Google Scholar 

  56. M. G. Mellon, L. I. Rebhun, Sulfhydryls and the in vitro polymerization of tubulin. J. Cell Biol. 70: 226–238 (1976).

    Article  Google Scholar 

  57. K. Mann, M. Gieselj H. Fasold, W. Hasse, Isolation of native microtubules from porcine brain and characterization of SH groups essential for polymerization at the GTP sites. FEBS Lett. 92: 45–48 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Irons, R.D., Pfeifer, R.W. (1982). Benzene Metabolites: Evidence for an Epigenetic Mechanism of Toxicity. In: Tice, R.R., Costa, D.L., Schaich, K.M. (eds) Genotoxic Effects of Airborne Agents. Environmental Science Research, vol 25. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3455-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3455-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3457-6

  • Online ISBN: 978-1-4613-3455-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics