Plant Genetic Systems with Potential for the Detection of Atmospheric Mutagens

  • Milton J. Constantin
Part of the Environmental Science Research book series (ESRH, volume 25)

Abstract

Higher plant genetic systems for the detection and monitoring of environmental mutagens have been described (1–5). In contrast to microbes, insects and mammals, few plant genetic systems have been developed primarily for research in environmental mutagenesis. Although other plant genetic systems have been used, the Tradescantia stamen hair and micronucleus systems are the only ones for which an appreciable amount of data on atmospheric mutagens is available (see Schairer et al. and Ma et al., these Proceedings).

Keywords

Starch Maize Smoke Microbe Gelatin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Ehrenberg, Higher plants, in: “Chemical Mutagens: Principles and Methods for their Detection”, Vol. 2, A. Hollaender, ed., Plenum Press, New York, N.Y., 365–386 (1971).Google Scholar
  2. 2.
    R. A. Nilan and B. K. Vig, Plant test systems for detection of chemical mutagens, in: “Chemical Mutagens: Principles and Methods for their Detection”, Vol. 4, A. Hollaender, ed., Plenum Press, N.Y., 143–170 (1976).Google Scholar
  3. 3.
    M. J. Constantin, Utility of specific locus systems, Environ. Health Perspectives 27: 69–75 (1978).CrossRefGoogle Scholar
  4. 4.
    R. A. Nilan, Potential of plant genetic systems for monitoring and screening mutagens, Environ. Health Perspective 27: 181–196 (1978).CrossRefGoogle Scholar
  5. 5.
    F. J. de Serres, Higher plant systems as monitors of environmental mutagens, in: “Application of Short-term Bioassays in the Fractionation and Analysis of Complex Environmental Mixtures”, M. D. Waters, S. Nesnow, J. L. Huisingh, S. S. Sandhu, and L. Claxton, eds., Proceedings USEPA Symposium, EPA-600/9-78-027, Plenum Press, New York, N.Y., 99–110 (1978).Google Scholar
  6. 6.
    M. J. Plewa, Activation of chemicals into mutagens by green plants: a preliminary discussion, Environ. Health Perspectives 27: 45–50 (1978).CrossRefGoogle Scholar
  7. 7.
    M. Freeling, Maize Adhl as a monitor of environmental mutagens, Environ. Health Perspectives 27: 91–97 (1978).CrossRefGoogle Scholar
  8. 8.
    U. S. Department of Health, Education, and Welfare, Higher Plants as Monitors of Environmental Mutagens, Proceedings of Workshop, January 16–18, 1978, Marineland, FL, Environ. Health Perspectives 27:1–206, USDHEW Pub. No. (NIH) 79–218 (1978).Google Scholar
  9. 8.
    U. S. Department of Health, Education, and Welfare, Higher Plants as Monitors of Environmental Mutagens, Proceedings of Workshop, January 16–18, 1978, Marineland, FL, Environ. Health Perspectives 27:1–206, USDHEW Pub. No. (NIH) 79–218 (1978).Google Scholar
  10. 10.
    U. S. Environmental Protection Agency, USEPA Gene-Tox Program, Reports by members of Workgroup on Plant Genetic and Cytogenetic Assays, M. J. Constantin, Chairman, Mutat. Res., in preparation, (1981).Google Scholar
  11. 11.
    G. P. Redei, Arabidopsis, in: “Handbook of Genetics”, Vol. 2, “Plants, Plant Viruses, and Protists”, R. C. King, ed., Plenum Press, New York, N.Y., 151–180 (1974).Google Scholar
  12. 12.
    C. M. Rick, The Tomato, in: “Handbook of Genetics”, Vol. 2, “Plants, Plant Viruses, and Protists”, R. C. King, ed., Plenum Press, New York, N.Y., 247–280 (1974).Google Scholar
  13. 13.
    G. Eriksson, The waxy character, Hereditas 63: 180–204 (1969).CrossRefGoogle Scholar
  14. 14.
    G. F. Sprague, B. Brimhall, and R. M. Hixon, Some effects of the waxy gene in corn on properties of the endosperm starch, J. Am. Soc. Agron. 35: 817–822 (1943).CrossRefGoogle Scholar
  15. 14.
    G. F. Sprague, B. Brimhall, and R. M. Hixon, Some effects of the waxy gene in corn on properties of the endosperm starch, J. Am. Soc. Agron. 35: 817–822 (1943).CrossRefGoogle Scholar
  16. 14.
    G. F. Sprague, B. Brimhall, and R. M. Hixon, Some effects of the waxy gene in corn on properties of the endosperm starch, J. Am. Soc. Agron. 35: 817–822 (1943).CrossRefGoogle Scholar
  17. 17.
    C. F. Konzak, R. A. Nilan, J. Wagner, and R. J. Foster, Efficient chemical mutagenesis, in: “The Use of Induced Mutations in Plant Breeding”, FAO/IAEA Tech. Mtg. Rome (Supplement to Radiation Botany, Vol. 5), Pergamon Press, Oxford, 49–70, (1965).Google Scholar
  18. 17.
    C. F. Konzak, R. A. Nilan, J. Wagner, and R. J. Foster, Efficient chemical mutagenesis, in: “The Use of Induced Mutations in Plant Breeding”, FAO/IAEA Tech. Mtg. Rome (Supplement to Radiation Botany, Vol. 5), Pergamon Press, Oxford, 49–70, (1965).Google Scholar
  19. 19.
    M. G. Neuffer and E. H. Coe, Jr., Corn (maize), in “Handbook of Genetics”, Vol. 2, “Plants, Plant Viruses, and Protists”, R. C. King, ed., Plenum Press, New York, N.Y., 3–30 (1974).Google Scholar
  20. 20.
    O. E. Nelson, Previously unreported wx heteroalleles, Maize Genet. Coop. Newsletter 50:109 (1976),Google Scholar
  21. 21.
    J. L. Rosichan, Genetic fine structure analysis of the waxy locus in barley (Hordeum vulgare), M.S. Thesis, Washington State University, Pullman, WA (1979).Google Scholar
  22. 22.
    D. deNettantcourt, G. Eriksson, D. Lindgren, and K. Puite, Effects of low doses by different types of radiation on the waxy locus in barley and maize, Hereditas 85: 89–100 (1977).CrossRefGoogle Scholar
  23. 23.
    G. Eriksson, Induction of waxy mutants in maize by acute and chronic gamma irradiation, Hereditas 50: 161–178 (1963).CrossRefGoogle Scholar
  24. 24.
    L. Ehrenberg and G. Eriksson, The dose dependence of mutation rates in the rad range, in the light of experiments with higher plants, Acta. Radiol. Suppl. 254: 73–81 (1966).Google Scholar
  25. 25.
    G. Eriksson, Radiation induced reversions of a waxy allele in barley, Radiat. Bot. 2: 35–39 (1962).Google Scholar
  26. 26.
    D. Lindgren, G. Eriksson, and K. Sulovska, The size and appearance of the mutated sector in barley spikes, Hereditas 65: 107–132 (1970).CrossRefGoogle Scholar
  27. 27.
    D. Lindgren and G. Ericksson, The mutated sector in barley spikes following isopropyl methanesulphonate (iPMS) treatment period. Hereditas 69: 129–134 (1971).CrossRefGoogle Scholar
  28. 28.
    K. Sulovska, D. Lindgren, G. Eriksson, and L. Ehrenberg, The mutagenic effect of low concentrations of ethylene oxide in air, Hereditas, 62: 264–266 (1969).CrossRefGoogle Scholar
  29. 29.
    D. Lindgren and K. Sulovska, The mutagenic effect of low concentrations of ethylene oxide in air, Proc. Fifth Meeting Scand. Assoc. Geneticists, Reykjavik, Hereditas 63 (Supplement) 460, Abstract, (1969).Google Scholar
  30. 30.
    D. Lindgren and K. Lindgren, Investigations of environmental mutagens by the waxy method, EMS Newsletter 6:22 Abstract, (1972).Google Scholar
  31. 31.
    W. B. Lower, P. S. Rose, and V. K. Drobney, In situ mutagenic and other effects associated with lead smelting, Mutat. Res. 54:83–93 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Milton J. Constantin
    • 1
  1. 1.Comparative Animal Research LaboratoryOak RidgeUSA

Personalised recommendations