Skip to main content

Excitatory Amino Acid Neurotoxins

  • Chapter
Handbook of Psychopharmacology

Abstract

In neuropsychopharmacology, there has been increasing emphasis on defining the functional synaptic circuitry of discrete neuronal pathways within the brain. A classical approach to this problem has relied upon electrothermic or surgical lesions to ablate cell bodies of origin or transect axonal bundles to cause orthograde degeneration of the pathway of interest. For example, such lesions have been employed by neurochemists to determine biochemical parameters specifically associated with or regulated by the pathway, by psychologists to evaluate the role of the pathway in certain behaviors, and by pharmacologists to probe sites of drug action. Unfortunately, the ablation of a discrete brain region results not only in damage to the neurons of interest but destruction of all axons within the lesion. As a consequence, anterograde and retrograde degeneration affecting other neuronal groups can seriously compromise interpretation of the specific association of the effects of the lesion with the pathway of interest. In addition, destructive techniques cannot be applied to the analysis of local circuit neurons since the lesion eliminates all neuronal constituents within its circumference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J. H., Precht, W., and Pappas, C., 1979, Changes in the vertical vestibulo-ocular reflex due to kainic acid lesions of the interstitial nucleus Cajal, Neurosci. Lett 14: 259–264

    PubMed  CAS  Google Scholar 

  • Arregui, A., Emson, P. C., and Spokes, E. G., 1978, Angiotensin-converting enzyme in substantia nigra: reduction of activity in Huntington’s disease and after intrastriatal kainic acid in rats, Eur. J. Pharmacol. 52: 121–124.

    CAS  Google Scholar 

  • Balcar, V. J., and Johnston, G. A. R., 1972, The structural specificity of the high-affinity uptake of L-glutamate and L-aspartate by rat brain slices, J. Neurochem 19: 2657–2666.

    PubMed  CAS  Google Scholar 

  • Beaumont, K., Maurin, Y., Reizine, T. D., Fields, J. Z., Spokes, E., Bird, E. D., and Yamamura, H. I., 1979, Huntington’s disease and its animal model: alterations in kainic acid binding, Life Sci. 24: 809–816.

    PubMed  CAS  Google Scholar 

  • Ben-Ari, Y., Tremblay, E., Ottersen, O. P., and Naquet, R., 1979, Evidence suggesting epileptogenic lesions after kainic acid: pretreatment with diazepam reduces distant but not local brain damage, Brain Res. 165: 362–365.

    PubMed  CAS  Google Scholar 

  • Ben-Ari, Y., Tremblay, E., and Ottersen, O. P., 1980α, Injections of kainic acid into the amygdaloid complex of the rat: an electrographic, clinical, and histological study in relation to the pathology of epilepsy, Neuroscience 5: 515–528.

    Google Scholar 

  • Ben-Ari, Y., Tremblay, E., Ottersen, O. P., and Meldrum, B. S., 1980b, The role of epileptic activity in hippocampal and “remote” cerebral lesions induced by kainic acid, Brain Res. 191: 79–97.

    PubMed  CAS  Google Scholar 

  • Bird, S. J., Gulley, R. L., Wenthold, R. J., and Fex, J., 1978, Kainic acid injections result in degeneration of cochlear nucleus cells innervated by the auditory nerve, Science 202: 1087–1089.

    PubMed  CAS  Google Scholar 

  • Biscoe, T. J., Evans, R. H., Headley, P. M., Martin, M. R., and Watkins, J. C., 1976, Structure-activity relations of excitatory amino acids on frog and rat spinal neurons, Br. J. Pharmacol 58: 373–382.

    PubMed  CAS  Google Scholar 

  • Biziere, K., and Coyle, J. T., 1978a, Influence of cortico-striatal afferents on striatal kainic acid neurotoxicity, Neurosci. Lett. 8: 303–310.

    CAS  Google Scholar 

  • Biziere, K., and Coyle, J. T., 1978b, Effects of kainic acid on ion distribution and ATP levels of striatal slices incubated in vitro, J. Neurochem 31: 513–520.

    PubMed  CAS  Google Scholar 

  • Biziere, K., and Coyle, J. T., 1979, Effects of cortical ablation on the neurotoxicity and receptor binding of kainic acid in striatum, J. Neurosci Res 4: 383–398.

    PubMed  CAS  Google Scholar 

  • Biziere, K., Thompson, H., and Coyle, J. T., 1979, Characterization of specific high-affinity binding sites for [3H]-glutamic acid in rat brain membranes, Brain Res. 183: 421–433.

    Google Scholar 

  • Campochiaro, P., and Coyle, J. T., 1978, Ontogenetic development of kainate neurotoxicity: correlates with glutamatergic innervation, Proc. Natl. Acad. Sci. U.S.A 75: 2025–2029.

    PubMed  CAS  Google Scholar 

  • Campochiaro, P., Schwarcz, R., and Coyle, J. T., 1977, GABA receptor binding in rat striatum: localization and effects of denervation, Brain Res. 136: 501 — 511.

    PubMed  CAS  Google Scholar 

  • Chan, P. H., Fishman, R. A., Lee,J. L., and Candelise, L., 1979, Effects of excitatory neurotransmitter amino acids on swelling of rat brain cortical slices, J. Neurochem 33: 1309–1315.

    PubMed  CAS  Google Scholar 

  • Colonnier, M., Steriade, M., and Landry, P., 1979, Selective resistance of sensory cells of the mesencephalic trigeminal nucleus to kainic acid-induced lesions, Brain Res. 172: 522–556.

    Google Scholar 

  • Cotman, C. W., Foster, A., and Lanthorn, T., 1981, An overview of glutamate as a neurotransmitter, in: Glutamate as a Neurotransmitter ( G. DiChiara and G. L. Gessa, eds.), pp. 1–27, Raven Press, New York.

    Google Scholar 

  • Coyle, J. T., and Schwarcz, R., 1976, Lesion of striatal neurons with kainic acid provides a model for Huntington’s chorea, Nature 263: 244–246.

    PubMed  CAS  Google Scholar 

  • Coyle, J. T., Molliver, M. E., and Kuhar, M. J., 1978, Morphologic analysis of kainic acid lesion of rat striatum, J. Comp. Neurol 180: 301–324.

    PubMed  CAS  Google Scholar 

  • Coyle, J. T., Slevin, J., London, E. D., Biziere, K., and Collins, J., 1980, Characterization of neuronal recognition sites for [3H]-kainic acid, in: Psychopharmacology and Biochemistry of Neurotransmitter Receptors ( R. W. Olsen, H. I. Yammaura, and E. Usdin, eds.), pp. 501–514, Raven Press, New York.

    Google Scholar 

  • Coyle, J. T., Zaczek, R., Slevin, J., and Collins, J., 1981, Neuronal receptor sites for kainic acid: correlations with neurotoxicity, in: Glutamate as a Neurotransmitter ( G. DiChiara and G. L. Gessa, eds.), pp. 337–346, Raven Press, New York.

    Google Scholar 

  • Curtis, D. R., and Watkins, J., 1963, Acidic amino acids with strong excitatory actions on mammalian neurons, J. Physiol. ( London ) 166: 1–14.

    CAS  Google Scholar 

  • Curtis, D. R., Phillis, J. W., and Watkins, J. C., 1961, Actions of amino acids on the isolated hemisected spinal cord of the toad, Br. J. Pharmacol 16: 262–283.

    CAS  Google Scholar 

  • Davies, J., Evans, R. H., Francis, A. A., and Watkins, J. C., 1979, Excitatory amino acid receptors and synaptic excitation in the mammalian central nervous system, J. Physiol. (Paris) 75: 641–654.

    CAS  Google Scholar 

  • Delong, M., and Coylej. T., 1979, Globus pallidus lesions in monkey produced by kainic acid: histologic an behavioral effects, Appl. Neurophysiol 42: 95–97.

    PubMed  CAS  Google Scholar 

  • Dichaira, G., Morelli, M., Imperato, A., Faa, G., Fossarello, M., and Porceddu, M. L., 1981, Effects of barbiturates and benzodiazepines on local kainate toxicity in the striatum and in the retina, in: Glutamate as a Neurotransmitter ( G. DiChaira and G. L. Gessa, eds.), pp. 355–373, Rave Press, New York.

    Google Scholar 

  • Divac, I., Fonnum, F., and Storm-Mathisen, J., 1977, High-affinity uptake of glutamate in terminals of cortico-striatal axons, Nature 266: 377–378.

    PubMed  CAS  Google Scholar 

  • Divac, I., Markowtisch, H. J., and Pritzel, M., 1978, Behavioral and anatomical consequences of small intra-striatal injections of kainic acid in the rat, Brain Res. 151: 523–532.

    PubMed  CAS  Google Scholar 

  • Engberg, I., Flatman, J. A., and Lambert, J. D. C., 1979, The actions of excitatory amino acids on motoneurons in the feline spinal cord, J. Physiol 288: 227–261.

    PubMed  CAS  Google Scholar 

  • Fonnum, F., and Walaas, I., 1978, The effect of intrahippocampal kainic acid injections and surgical lesions on neurotransmitters in hippocampus and septum, J. Neurochem 31: 1173–1181.

    PubMed  CAS  Google Scholar 

  • Foster, A. C., and Roberts, P. J., 1978, High-affinity L-[3H]-glutamate binding to postsynaptic receptor sites on rat cerebellar membranes, J. Neurochem 31: 1467–1473.

    PubMed  CAS  Google Scholar 

  • Friedle, N. M., Kelly, P. H., and Moore, K. E., 1978, Regional brain atrophy and reductions in glutamate release and uptake after intrastriatal kainic acid, Br. J. Pharmacol 63: 151–158.

    PubMed  CAS  Google Scholar 

  • Gaddy, J. R., Britt, M. D., Neill, D. B., and Haigler, H. J., 1979, Susceptibility of rat neostriatum to damage by kainic acid: age dependence, Brain Res. 176: 192–196.

    PubMed  CAS  Google Scholar 

  • Gale, K., Hong, J. S., and Guidotti, A., 1977, Presence of substance P and GAB A in separate striato-nigral neurons, Brain Res. 136: 371–375.

    PubMed  CAS  Google Scholar 

  • Garvey, L. J., and Hornung, J. P., 1980, The use of ibotenic acid lesions for light and electron microscopy study of anterograde degeneration in the visual pathway of the cat, Neurosci. Lett 19: 117–123.

    Google Scholar 

  • Gotesfeld, Z., and Jacobowitz, D., 1979, Kainic acid-induced neurotoxicity in the striatum: a histofluorescent study, Brain Res. 169: 513–518.

    Google Scholar 

  • Haldeman, S., and Mclennan, H., 1972, The antagonistic action of glutamic acid diethyl ester towards amino acid induced synaptic excitation of central neurones, Brain Res. 45: 393–400.

    PubMed  CAS  Google Scholar 

  • Hall, J. G., Hicks, T. P., and Mclennen, H., 1978, Kainic acid and the glutamate receptor, Neurosci. Lett. 8: 172–175.

    Google Scholar 

  • Hall, J. G., Hicks, T. P., Mclennan, H., Richardson, T. L., and Wheal, H. V., 1979, The excitation of mammalian central neurones by amino acids, J. Physiol 286: 29–39.

    PubMed  CAS  Google Scholar 

  • Hampton, C. K., Garcia, C., and Redburn, D. A., 1981 Localization of kainic acid-sensitive cells in mammalian retina, J. Neurosci. Res 6: 99–111.

    PubMed  CAS  Google Scholar 

  • Harvey, J. A., and Mcilwain, H., 1968, Excitatory acidic amino acids and cation content and sodium ion flux of isolated tissues from the brain, Biochem. J 108: 269–274.

    PubMed  CAS  Google Scholar 

  • Hattori, T., and Mcgeer, E. G., 1977, Fine structural changes in the rat striatum after local injection of kainic acid, Brain Res. 129: 174–180.

    PubMed  CAS  Google Scholar 

  • Hattori, T., Mcgeer, E. G., and Mcgeer, P. L., 1979, Fine structural analysis of the corticostriatal pathway, J. Comp. Neurol 185: 347–354.

    PubMed  CAS  Google Scholar 

  • Hayashi, T., 1954, Effects of sodium glutamate on the nervous system, Keio J. Med. 3: 183–192.

    Google Scholar 

  • Henke, H., and Cuenod, M., 1979, L-Glutamate specific [3H]-kainic acid binding in the rat neostriatum after degeneration of the cortico-striatal pathway, Neurosci. Lett 11: 341–345.

    PubMed  CAS  Google Scholar 

  • Herndon, R., Addicks, E., and Coyle, J. T., 1980, Ultrastructural analysis of kainic acid lesion to cerebellar cortex, Neuroscience 5: 1015–1026.

    PubMed  CAS  Google Scholar 

  • Hong, J. S., Yang, H. Y., Racagni, G., and Costa, E., 1977, Projections of substance P containing neurons from neostriatum to substantia nigra, Brain Res. 122: 541–544.

    PubMed  CAS  Google Scholar 

  • Honnegar, P., and Richelson, E., 1977, Kainic acid alters neurochemical development in fetal rat brain aggregating cultures, Brain Res. 138: 580–584.

    Google Scholar 

  • Johnston, G. A. R., Curtis, D. R., Davies, J., and Mcculloch, R. M., 1974, Spinal interneurone excitation by conformationally restricted analogues of L-glutamic acid, Nature 248: 804–805.

    PubMed  CAS  Google Scholar 

  • Johnston, G. A. R., Kennedy, S. M. E., and Twitchin, B., 1979, Action of the neurotoxin kainic acid on high-affinity uptake of L-glutamic acid in rat brain slices, J. Neurochem 32: 121–127.

    PubMed  CAS  Google Scholar 

  • Kizer, J. S., Nemeroff, C. B., and Youngblood, W. W., 1978, Neurotoxic amino acids and structurally related analogs, Pharmacol. Rev 29: 301–318.

    Google Scholar 

  • Köhler, C., and Schwarcz, R., 1981, Monosodium glutamate: increased neurotoxicity after removal of re-uptake sites, Brain Res. 211: 485–491.

    PubMed  Google Scholar 

  • Köhler, C., Schwarcz, R., and Fuxe, K., 1978, Perforant path transections protect hippocampal granule cells from kainate lesion, Neurosci. Lett 10: 241–246.

    PubMed  Google Scholar 

  • Köhler, C., Schwarcz, R., and Fuxe, K., 1979, Intrahippocampal injections of ibotenic acid provide histological evidence for a neurotoxic mechanism different from kainic acid, Neurosci. Lett 15: 223–228.

    PubMed  Google Scholar 

  • Krammer, E. B., 1980, Anterograde and transsynaptic degeneration “encascade” in basal ganglia induced by intrastriatal injection of kainic acid: an animal analogue of Huntington’ Disease. Brain Res. 196: 209–221.

    PubMed  CAS  Google Scholar 

  • Krogsgaard-Larsen, P., Honore, T., Hansen, J. J., Curtis, D. R., and Lodge, D., 1980, New class of glutamate agonist structurally related to ibotenic acid, Nature 284: 64–66.

    PubMed  CAS  Google Scholar 

  • Lakshmanan, J., and Padmanaban, G., 1974, Effect of some strong excitants of central neurones on the uptake of L-glutamate and L-aspartate by synaptosomes, Biochem. Biophys. Res. Commun 58: 690–698.

    PubMed  CAS  Google Scholar 

  • Lechan, R. M., Alpert, L. C., and Jackson, I. M. D., 1976, Synthesis of lutenizing hormone releasing factor and thyrotropin releasing factor in glutamate-lesioned mice, Nature 264: 463–465.

    PubMed  CAS  Google Scholar 

  • Lemkey-Johnston, N., Butler, V., and Reynolds, W. A., 1976, Glial changes in the progress of a chemical lesion. An electron microscopic study, J. Comp. Neurol 167: 481–502.

    PubMed  CAS  Google Scholar 

  • Logan, W. J., and Snyder, S. H., 1972, High-affinity uptake systems for glycine, glutamic, and aspartic acids in synaptosomes of rat central nervous system, Brain Res. 42: 413–431.

    PubMed  CAS  Google Scholar 

  • London, E. D., and Coyle, J. T., 1979a, Specific binding of [3H]-kainic acid to receptor sites in rat brain, Mol. Pharmacol 15: 492–505.

    PubMed  CAS  Google Scholar 

  • London, E. D., and Coyle, J. T., 19796, Cooperative interactions at [3H]-kainic acid binding sites in rat and human cerebellum, Eur. J. Pharmacol 56: 287–290.

    Google Scholar 

  • London, E. D., Klemm, N., and Coyle, J. T., 1980, Phylogenetic distribution of [3H]-kainic acid receptor binding sites in neuronal tissue, Brain Res. 192: 463–476.

    PubMed  CAS  Google Scholar 

  • Lucas, D. R., and Newhouse, J. P., 1957, The toxic effect of sodium L-glutamate on the inner layers of the retina, Arch. Ophthalmol 58: 193.

    CAS  Google Scholar 

  • Lundkarlsen, B., and Fonnum, F., 1976, The toxic effects of sodium glutamate on rat retina: changes in putative transmitters and corresponding enzymes, J. Neurochem 27: 1437–1441.

    Google Scholar 

  • Malthe-Sorenssen, D., Odden, E., and Walaas, I., 1980, Selective destruction by kainic acid of neurons innervated by putative glutamatergic afferents in septum and nucleus of the diagonal band, Brain Res. 182: 461–465.

    PubMed  CAS  Google Scholar 

  • Mcculloch, R. M., Johnston, G. A. R., Game, C. J. A., and Curtis, D. R., 1974, The differential sensitivity of spinal interneurones and Renshaw cells to kainate and N-methyl-D-aspartate, Exp. Brain Res 21: 515–518.

    PubMed  CAS  Google Scholar 

  • Mcgeer, E. G., and Mcgeer, P. L., 1976, Some factors influencing the neurotoxicity of intrastriatal injections of kainic acid, Neurochem. Res 3: 501–517.

    Google Scholar 

  • Mcgeer, E. G., Mcgeer, P. L., and Singh, K., 1978, Kainate-induced degeneration of neostriatal neurons: dependency on cortico-striatal tract Brain Res. 139: 381–383.

    PubMed  CAS  Google Scholar 

  • Mclennan, H., 1980, The effect of decortication on the excitatory amino acid sensitivity of striatal neurones, Neurosci. Lett 18: 313–316.

    PubMed  CAS  Google Scholar 

  • Meibach, R. C., Brown, L., and Brooks, F. H., 1978, Histofluorescence of kainic acid- induced striatal lesions, Brain Res. 148: 219–223.

    PubMed  CAS  Google Scholar 

  • Meldrum, B., Vigouroux, R. A., and Brierley, J. B., 1973, Systemic Factors and Epileptic Brain Damage, Arch. Neurol 29: 82–87.

    PubMed  CAS  Google Scholar 

  • Meldrum, B. S., Horton, R. W., and Brierley, J. B., 1974, Epileptic brain damage in adolescent baboons following seizures induced by allylglycine, Brain 97: 407–418.

    PubMed  CAS  Google Scholar 

  • Michaelis, E. K., Michaelis, M. L., and Boyarsky, L. L., 1974, High-affinity glutamic acid binding to brain synaptic membranes, Biochim. Biophys. Acta 367: 338–348.

    PubMed  CAS  Google Scholar 

  • Minneman, K. P., Quik, M., and Emson, P., 1978, Receptor-linked cyclic AMP systems in rat neostriatum: differential localization revealed by kainic acid injection, Brain Res. 151: 507–521.

    PubMed  CAS  Google Scholar 

  • Mizukawa, K., Shimizu, K., Matsuma, T., Ibata, Y., and Sano, Y., 1976, The influence of kainic acid on the tuberoinfundibular dopaminergic tract of the rat: fluorescence histochemistry and electron microscopic investigation, Acta Histochem. Cytochem 9: 315–322.

    CAS  Google Scholar 

  • Nadler, J. V., 1980, Role of excitatory pathways in the hippocampal damage produced by kainic acid, in: Glutamate as a Neurotransmitter ( G. DiChiara and G. L. Gessa, eds.), pp. 395–402, Raven Press, New York.

    Google Scholar 

  • Nadler, J. V., and Cuthbertson, G. J., 1980, Kainic acid neurotoxicity toward hippocampal formation: dependence on specific excitatory pathways, Brain Res. 195: 47–56.

    PubMed  CAS  Google Scholar 

  • Nadler, J. V., Perry, B. W., and Cotman, C. W., 1978, Intraventricular kainic acid preferentially destroys hippocampal pyramidal cells, Nature (London) 271: 676–677.

    CAS  Google Scholar 

  • Nadler, J. V., Perry, B. W., Gentry, C., and Cotman, C. W., 1980, Loss and reacquisition of hippocampal synapses after selective destruction of CA3-CA4 afferents with kainic acid, Brain Res. 191: 387–403.

    PubMed  CAS  Google Scholar 

  • Nelson, M., Zaczek, R., and Coyle, J. T., 1980, Effects of sustained seizures produced by intra-hippocampal injection of kainic acid on noradrenergic neurons: evidence for local control of norepinephrine release J. Pharmacol. Exp. Ther. 214: 694–702.

    PubMed  CAS  Google Scholar 

  • Nemeroff, C. B., Grant, L. D., Bissette, G., Ervin, G. M., Harrell, L. F., and Prang, A. J., 1977, Growth, endocrinological and behavioral deficits after monosodium L-glutamate in the neonatal rat: possible involvement of arcuate dopamine neuron damage, Psycho- neuroendocrinology 2: 179–196.

    CAS  Google Scholar 

  • Nicklas, W. T., Nunez, R., Berl, S., and Duvoisin, R., 1979, Neuronal-glial contributions to transmitter amino acid metabolism: studies with kainic acid-induced lesions of rat striatum, J. Neurochem 33: 839–844.

    PubMed  CAS  Google Scholar 

  • Nistri, A., Macdonald, J. F., and Barker, J. L., 1981, Effects of ibotenic acid on amphibian and mammalian spinal neurones in vitro, in: Glutamate as a Neurotransmitter ( G. DiChiara and G. L. Gessa, eds.), pp. 245–252, Raven Press, New York.

    Google Scholar 

  • Okamoto, K., and Quastel, J. H., 1970, Water uptake and energy metabolism in brain slices from the rat, Biochem. J 120: 25–36.

    PubMed  CAS  Google Scholar 

  • Olney, J. W., 1971, Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J. Neuropathoi Exp. Neurol. 30: 75–90.

    CAS  Google Scholar 

  • Olney, J. W., and Degubareff, T., 1977, The fate of synaptic receptors in the kainate- lesioned striatum, Brain Res. 140: 340–343.

    Google Scholar 

  • Olney, J. W., Ho, O. L., and Rhee, V., 1971, Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system, Exp. Brain Res 14: 61–76.

    PubMed  CAS  Google Scholar 

  • Olney, J. F., Rhee, V., and Ho, O. L., 1974, Kainic acid: a powerful neurotoxic analogue of glutamate, Brain Res. 77: 507–512

    PubMed  CAS  Google Scholar 

  • Olney, J. W., Misra, C. H., and Rhee, V., 1976, Brain and retinal damage from the lathyrus excitotoxin, β-N-oxalyl-L-α,β-diaminopropionic acid (ODAP), Nature 264: 659–661.

    PubMed  CAS  Google Scholar 

  • Olney, J. W., Rhee, V., and De Gubareff, T., 1977, Neurotoxic effects of glutamate on the area postrema, Brain Res. 120: 151–157.

    PubMed  CAS  Google Scholar 

  • Olney, J. W., De Gubareff, T., and Labruyere, J., 1979a, α-Aminoadipate blocks the neurotoxic action of N-methyl aspartate, Life Sci. 5: 537–540.

    Google Scholar 

  • Olney, J. W., Fuller, T., and De Gubareff, T., 19796, Acute dendrotoxic changes in the hippocampus of kainate-treated rats, Brain Res. 176: 91–100.

    Google Scholar 

  • Pannula, P. A. J., 1980, A fine structural and histochemical study on the effect of kainic acid on cultured neostriatal cells, Brain Res. 181: 185–190.

    Google Scholar 

  • Perez, V. J., and Olney, J. W., 1972, Accumulation of glutamic acid in arcuate nucleus of infant mouse hypothalamus following subcutaneous administration of the amino acid, J. Neurochem 19: 1777–1781.

    PubMed  CAS  Google Scholar 

  • Perez, V. J., Olney, J. W., Frolichstein, C. F., Martin, J. F., and Cannon, W. O., 1976, Regional uptake of neurotoxic and nontoxic amino acids in vivo by the infant mouse brain, Biochem. Pharmacol 25: 1415–1419.

    PubMed  CAS  Google Scholar 

  • Peterson, G. M., and Moore, R. Y., 1980, Selective effects of kainic acid on diencephalic neurons, Brain Res. 202: 165–182.

    PubMed  CAS  Google Scholar 

  • Price, M. T., Olney, J. W., and Cicero, T. J., 1978, Acute elevations of serum luteinizing hormone induced by kainic acid, N-methylaspartic acid, or homocysteic acid, Neuroendocrinology 26: 352–358.

    PubMed  CAS  Google Scholar 

  • Pritzel, M., and Markowitz, H. J., 1980, Kainic acid lesions in the cat’s thalamus: morphologic and behavioral changes, Brain Res. Bull 5: 61–67.

    PubMed  CAS  Google Scholar 

  • Retz, K., and Coyle, J. T., 1980, Kainic acid lesion of mouse striatum: effects on energy metabolites, Life Sci. 27: 2495–2500.

    PubMed  CAS  Google Scholar 

  • Retz, K., and Coyle, J. T., 1981, Effects of kainic acid on high-energy metabolites in the mouse brain, J. Neurochem, 38: 196–203.

    Google Scholar 

  • Richards, C. D., and Smaje, J. C., 1976, Anaesthetics depress the sensitivity of cortical neurons to L-glutamate, Br. J. Pharmacol. 58: 347–357.

    Google Scholar 

  • Roberts, P. J., 1974, Glutamate receptors in rat central nervous system, Nature (London) 252: 399–401.

    CAS  Google Scholar 

  • Schwarcz, R., and Coyle, J. T., 1977a, Striatal lesions with kainic acid: neurochemical characteristics, Brain Res. 127235–249.

    Google Scholar 

  • Schwarcz, R., and Coyle, J. T., 1977b, Kainic acid: neurotoxic effects after extraocular injection, Invest. Ophthalmol. Vis. Sci 16: 141–148.

    PubMed  CAS  Google Scholar 

  • Schwarcz, R., and Coyle, J. T., 1978, Neurochemical sequelae of kainate injections in corpus striatum and substantia nigra of the rat, Life Sci. 20: 431–436.

    Google Scholar 

  • Schwarcz, R., Scholz, D., and Coyle, J. T., 1978a, Structure-activity relations for the neurotoxicity of kainic acid derivatives and glutamate analogues, Neuropharmacology 17: 145–151.

    PubMed  CAS  Google Scholar 

  • Schwarcz, R., Zaczek, R., and Coyle, J. T., 19786, Microinjection of kainic acid into the rat hippocampus, Eur. J. Pharmacol 50: 209–220.

    Google Scholar 

  • Schwarcz, R., Hokfelt, T., Fuxe, K., Jonsson, G., Goldstein, M., and Terenius, L., 1979, Ibotenic acid-induced neuronal degeneration: a morphological and neurochemical study, Exp. Brain Res. 37: 199–216.

    CAS  Google Scholar 

  • Schwarcz, R., Fuxe, K., Terenius, J., and Goldstein, M., 1980, Effects of chronic striatal kainate lesions on some dopaminergic parameters and enkephalin-immunoreactive neurons in the basal ganglia, J. Neurochem 34: 772–778.

    PubMed  CAS  Google Scholar 

  • Schwob, J. E., Fuller,T., Price, J. L., and Olney, J. W., 1980, Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: a histologic study, Neuroscience 5: 991–1014.

    PubMed  CAS  Google Scholar 

  • Seil, F. J., Blank, N. K., and Leiman, A. L., 1979, Toxic effects of kainic acid on mouse cerebellum in tissue culture, Brain Res. 161: 253–265.

    PubMed  CAS  Google Scholar 

  • Simon, J. R., Contrera, J. F., and Kuhar, M. J., 1976, Binding of [3H]kainic acid, an analogue of L-glutamate, to brain membranes, J. Neurochem 26: 141–147.

    PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J., 1980, Localization of putative transmitters in the hippocampal formation, Prog. Brain Res 54: 49–68.

    Google Scholar 

  • Streit, P., Stella, M., and Cuenod, M., 1980, Kainate-induced lesion in the optic tectum: depending upon optic nerve afferents or glutamate, Brain Res. 187: 47–57.

    PubMed  CAS  Google Scholar 

  • Sricker, E. M., Swerdloff, A. F., and Zigmond, M. J., 1978, Intrahypothalamic injections of kainic acid produce feeding and drinking deficits in rats, Brain Res. 158: 470–473.

    Google Scholar 

  • Szentagothai, J., 1971, Structure-function relationships in inhibitory synapses, in: Advances in Cytopharmacology, Vol. I ( F. Clementi, and B. Ciccarelli, eds.), pp. 401–417, Raven Press, New York.

    Google Scholar 

  • Talman, W., Perrone, M. H., Doba, N., and Reis, D. J., 1979, Fulminating hypertension produced by local injection of kainic acid into the nucleus tractus solitarii in the rat, Neurosci. Abstr 5: 51.

    Google Scholar 

  • Vanharreveld, A., and Fifkova, E., 1971, Light and electron microscopic changes in central nervous tissue after electrophoretic injection of glutamate, Exp. Mol. Pathol. 15: 61–81.

    Google Scholar 

  • Vincent, S. R., and McGeer, E. G., 1979, Kainic acid binding to membranes of striatal neurons, Life Sci. 24: 265–270.

    PubMed  CAS  Google Scholar 

  • Watkins, J. C., 1978, Excitatory amino acids, in: Kainic Acid as a Tool in Neurobiology ( E. G. McGeer, J. W. Olney, and P. L. McGeer, eds.), pp. 37–69, Raven Press, New York.

    Google Scholar 

  • Watkins, J. C., and Evans, R. H., 1981, Excitatory amino acid transmitters, Ann. Rev. Pharmacol. Toxicol 21: 165–204.

    CAS  Google Scholar 

  • Weurthele, S. M., Lovell, K. M., Jones, M. Z., and Moore, K. E., 1978, A Histological Study of Kainic Acid-Induced Lesions in the Rat Brain, Brain Res. 147: 489–497.

    Google Scholar 

  • Whetsell, W. O., JR., Ecob-Johnston, M. S., and Nicklas, W. J., 1979, Studies of kainate- induced caudate lesions in organotypic tissue culture, in: Advances in Neurology ( T. N. Chase, N. S. Wexler, and A. Barbeau, eds.), pp. 646, Raven Press, New York.

    Google Scholar 

  • Wooten, G. F., and Collins, R., 1980, Regional brain glucose utilization following intrastriatal injection of kainic acid, Brain Res. 201: 173–184.

    PubMed  CAS  Google Scholar 

  • Zaczek, R., and Coyle, J. T., 1982, Excitatory amino acid analogues: neurotoxicity and seizures, Neuropharmacology, 21: 15–26.

    PubMed  CAS  Google Scholar 

  • Zaczek, R., Nelson, M., and Coyle, J. T., 1978a, Effects of anaesthetics and anticonvulsants on the action of kainic acid in the rat hippocampus, Eur. J. Pharmacol 52: 323–327.

    PubMed  CAS  Google Scholar 

  • Zaczek, R., Schwarcz, R., and Coyle, J. T., 19786, Long-term sequelae of striatal kainate lesion, Brain Res. 152: 626–632.

    Google Scholar 

  • Zaczek, R., Hedreen, J. C., and Coyle, J. T., 1979, Evidence for a hippocampal-septal glutamatergic pathway in rat, J. Exp. Neurol 65: 145–156.

    CAS  Google Scholar 

  • Zaczek, R., Nelson, M., and Coyle, J. T., 1980a, Kainic acid neurotoxicity and seizures, Neuropharmacology 20: 183–199.

    Google Scholar 

  • Zaczek, R., Simonton, S., and Coyle, J. T., 1980b, Local and distant neuronal degeneration following intrastriatal injection of kainic acid, J. Neuropathol. Exp. Neurol 39: 245–264.

    Google Scholar 

  • Zaczek, R., Collins, J., and Coyle, J. T., 1981, N-methyl-D-aspartic acid: a potent convulsant with weak neurotoxic properties, Neurosci. Lett, 24: 181–186.

    PubMed  CAS  Google Scholar 

  • Zahniser, N. R., Minneman, K. P., and Molinoff, P. B., 1979, Persistence of (3-adrenergic receptors in rat striatum following kainic acid administration, Brain Res. 178: 589–595.

    PubMed  CAS  Google Scholar 

  • Zieglgansberger, W., and Puil, E. A., 1972, Tetrodotoxin interference of CNS excitation by glutamic acid, Nature (London) 239: 204–205.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Coyle, J.T. (1982). Excitatory Amino Acid Neurotoxins. In: Iversen, L.L., Iversen, S.D., Snyder, S.H. (eds) Handbook of Psychopharmacology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3452-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3452-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3454-5

  • Online ISBN: 978-1-4613-3452-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics