Skip to main content

Interior Point Approaches for the VLSI Placement Problem

  • Chapter
Interior Point Methods of Mathematical Programming

Part of the book series: Applied Optimization ((APOP,volume 5))

  • 667 Accesses

Abstract

VLSI placement involves arranging components on a two-dimensional board such that the total interconnection wire length is minimized while avoiding component overlap and ensuring enough area is provided for routing. Placement is accomplished in a two-step procedure. The first step involves computing a good relative placement of all components while ignoring overlap and routing. The second step involves removing overlap and routing. This paper describes two new relative placement models that generate sparse LP and QP programs. The resulting LP and QP programs are efficiently solved using appropriate interior point methods. In addition, an important extension is described to reduce module overlap. Numerical results on a representative set of real test problems are presented

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. Bunch and B. N. Parlett. Direct methods for solving symmetric indefinite systems of linear equations.SIAM J. Numer. Anal., 8: 639–655, 1971.

    Article  MathSciNet  Google Scholar 

  2. P.Chin and A. Vanneli. Computational methods for an LP model of the placement. Technical report, University of Waterloo, Ontario, 1994. UW E jade C-94–02.

    Google Scholar 

  3. CPLEX Optimization Inc. Using the CPLEX callable library and CPLEX mixed integer library. Incline Village, NV. 1993.

    Google Scholar 

  4. G. Hachtel and C. Morrison. Linear complexity algorithms for hierarchical routing.IEEE Transactions on Computer-Aided Design, 8 (l): 64–80, 1989.

    Article  Google Scholar 

  5. S. W. Hadley, B. L. Mark, and A. Vannelli. An efficient eigenvector approach for finding netlist partitions.IEEE Transactions on Computer-Aided Design, 11 (7): 885–892, July 1992.

    Article  Google Scholar 

  6. K. M. Hall. An r-dimensional quardratic placement algorithm.Management Science, 17 (3): 219–229, November 1991.

    Article  Google Scholar 

  7. T.C. Hu and E. Kuh. Theory and concepts of circuit layout, inVLSI Circuit Layout: Theory and Design, pp. 3–18, IEEE Press, New York, 1985.

    Google Scholar 

  8. K. Kozminski. Benchmarks for layout synthesis — evolution and current status, inProceedings 28th ACM/IEEE Design Automation Conference, pp. 265–270, 1991.

    Chapter  Google Scholar 

  9. D. G. Luenberger.Introduction to Linear and Nonlinear Programming. Addison- Wesley Pub. Co., Reading, Mass., 1973.

    MATH  Google Scholar 

  10. D. G. Schweikert and B. W. Kernighan. A proper model for the partitioning of electrical circuits. InProceedings of the 9th Design and Automation Workshop, pages 57–62, June 1979.

    Google Scholar 

  11. C. Sechen and A. Sangiovanni Vincentelli. The Timberwolf placement and routing package.IEEE J. Solid-State Circuits, 20: 510–522, 1985.

    Article  Google Scholar 

  12. N. Sherwani.Algorithms for VLSI Physical Design Automation. Kluwer Academic Publishers, Norwell, Massachusetts, 1993.

    Google Scholar 

  13. G. Sigl, K. Doll and F. Johannes. Analytical placement: a linear or quadratic objective function?.Proc. 28th ACM/IEEE Design Automation Conference, 427–432, 1991.

    Google Scholar 

  14. L. Song and A. Vannelli. A VLSI placement method using TABU search.Microelectronics Journal, 23: 167–172, 1992.

    Article  Google Scholar 

  15. R. J. Vanderbei. LOQO: An interior point code for quadratic programming. Technical report, Princeton University, Princeton, N.J., 1994.

    Google Scholar 

  16. R. J. Vanderbei and T. J. Carpenter. Symmetric indefinite systems for interior point methods.Mathematical Programming, 58: 1–32, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. X. Weis and D. A. Mlynski. A new relative placement procedure based on MSST and linear programming.Proc. IEEE Int. Symp. Cir. jade Sys., 2: 564–567, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Vannelli, A., Kennings, A., Chin, P. (1996). Interior Point Approaches for the VLSI Placement Problem. In: Terlaky, T. (eds) Interior Point Methods of Mathematical Programming. Applied Optimization, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3449-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3449-1_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3451-4

  • Online ISBN: 978-1-4613-3449-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics