Skip to main content

Part of the book series: Applied Optimization ((APOP,volume 5))

Abstract

Interior point methods, originally invented in the context of linear programming, have found a much broader range of applications, including global optimization problems that arise in engineering, computer science, operations research, and other disciplines. This chapter overviews the conceptual basis and applications of interior point methods for some classes of global optimization problems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Adler, M.G.C. Resende, G. Veiga, and N. Karmarkar. An implementation of Karmarkar’ s algorithm for linear programming.Mathematical Programming, 44: 297–335, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Alizadeh. Optimization over positive semi-definite cone: Interior-point methods and combinatorial applications. In P.M. Pardalos, editor,Advances in Optimization and Parallel Computing, pages 1–25. North-Holland, Amsterdam, 1992.

    Google Scholar 

  3. I.I. Dikin. Iterative solution of problems of linear and quadratic programming.Soviet Math. Doklady, 8: 674–675, 1967.

    MATH  Google Scholar 

  4. K. Fujisawa and M. Kojima. SPDA (Semidefinite Programming Algorithm)–User’ s manual. Technical Report B-308, Tokyo Institute of Technology, Department of Mathematical and Computing Sciences, Tokyo, December 1995. Program available at ftp: //ftp. is. titech. ac. jp/pub/OpRes/software/SDPA.

    Google Scholar 

  5. G.H. Golub and C.F. Van Loan.Matrix Computations. The Johns Hopkins University Press, Baltimore, 1989.

    MATH  Google Scholar 

  6. C.-G. Han, P.M. Pardalos, and Y. Ye. On the solution of indefinite quadratic problems using an interior point algorithm.Informatica, 3: 474–496, 1992.

    MathSciNet  MATH  Google Scholar 

  7. R. Horst and P.M. Pardalos, editors.Handbook of Global Optimization. Kluwer Academic Publishers, Amsterdam, 1995.

    MATH  Google Scholar 

  8. R. Horst, P.M. Pardalos, and N.V. Thoai.Introduction to Global Optimization. Kluwer Academic Publishers, Amsterdam, 1995.

    MATH  Google Scholar 

  9. A.P. Kamath and N. Karmarkar. A continuous method for computing bounds in integer quadratic optimization problems.Journal of Global Optimization, 2: 229–241, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  10. A.P. Kamath and N. Karmarkar. AnO(nL) iteration algorithm for computing bounds in quadratic optimization problems. In P.M. Pardalos, editor,Complexity in Numerical Optimization, pages 254–268. World Scientific, Singapore, 1993.

    Chapter  Google Scholar 

  11. A.P. Kamath, N. Karmarkar, K.G. Ramakrishnan, and M.G.C. Resende. A continuous approach to inductive inference.Mathematical Programming, 57: 215–238, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  12. A.P. Kamath, N. Karmarkar, K.G. Ramakrishnan, and M.G.C. Resende. An interior point approach to Boolean vector function synthesis. InProceedings of the 36th MSCAS, pages 185–189, 1993.

    Google Scholar 

  13. A.P. Kamath, N. Karmarkar, N. Ramakrishnan, and M.G.C. Resende. Computational experience with an interior point algorithm on the Satisfiability problem.Annals of Operations Research, 25: 43–58, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Karmarkar. An interior-point approach for NP-complete problems.Contemporary Mathematics, 114: 297–308, 1990.

    MathSciNet  Google Scholar 

  15. N. Karmarkar, M.G.C. Resende, and K. Ramakrishnan. An interior point algorithm to solve computationally difficult set covering problems.Mathematical Programming, 52: 597–618, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  16. N. Karmarkar, M.G.C. Resende, and K.G. Ramakrishnan. An interior point approach to the maximum independent set problem in dense random graphs. InProceedings of the XIII Latin American Conference on Informatics, volume 1, pages 241–260, Santiago, Chile, July 1989.

    Google Scholar 

  17. N.K. Karmarkar. A new polynomial time algorithm for linear programming.Combinatorica, 4: 373–395, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Kojima, N. Megiddo, T. Noma, and A. Yoshise.A unified approach to interior point methods for linear complementarity problems. Lecture Notes in Computer Science. Springer-Verlag, 1991.

    Google Scholar 

  19. K. Levenberg. A method for the solution of certain problems in least squares.Quart. Appl. Math., 2: 164–168, 1944.

    MathSciNet  MATH  Google Scholar 

  20. O.L. Mangasarian. Characterization of linear complementarity problems as linear programs.Mathematical Programming Study, 7: 74–87, 1978.

    MathSciNet  MATH  Google Scholar 

  21. D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters.SIAM J. Appl. Math., 11: 431–441, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  22. R.D.C. Monteiro, I. Adler, and M.G.C. Resende. A polynomial-time primal- dual affine scaling algorithm for linear and convex quadratic programming and its power series extension.Mathematics of Operations Research, 15: 191–214, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  23. R.D.C. Monteiro and Y. Wang. Trust region affine scaling algorithms for linearly constrained convex and concave programs. Technical report, Georgia Institute of Technology, Atlanta, GA, June 1995. To appear inMathematical Programming.

    Google Scholar 

  24. J.J. Moré and D.C. Sorenson. Computing a trust region step.SIAM J. of Stat. Sci. Comput., 4: 553–572, 1983.

    Article  MATH  Google Scholar 

  25. P. M. Pardalos, Y. Ye, C.-G. Han, and J. Kaliski. Solution of P-matrix linear complementarity problems using a potential reduction algorithm.SIAM J. Matrix Anal. & Appl, 14: 1048–1060, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  26. P.M. Pardalos. Continuous approaches to discrete optimization problems. In G. Di Pillo and F. Giannessi, editors,Nonlinear optimization and applications. Plenum Publishing, 1996.

    Google Scholar 

  27. P.M. Pardalos and J.B. Rosen. Global optimization approach to the linear complementarity problem.SIAM J. Scient. Stat. Computing, 9: 341–353, 1988.

    Article  MathSciNet  Google Scholar 

  28. M.V. Ramana.An algorithmic analysis of multiplicative and semidefinite programming problems. PhD thesis, The Johns Hopkins University, Baltimore, 1993.

    Google Scholar 

  29. M.G.C. Resende and P.M. Pardalos. Interior point algorithms for network flow problems. In J.E. Beasley, editor,Advances in linear and integer programming. Oxford University Press, 1996.

    Google Scholar 

  30. C.-J. Shi, A. Vannelli, and J. Vlach. An improvement on Karmarkar’ s algorithm for integer programming. In P.M. Pardalos and M.G.C. Resende, editors, COAL Bulletin —Special issue on Computational Aspects of Combinatorial Optimization, number 21, pages 23–28. 1992.

    Google Scholar 

  31. T. Tsuchiya and M. Muramatsu. Global convergence of a long-step affine scaling algorithm for degenerate linear programming problems. Technical Report 423, The Institute of Statistical Mathematics, Tokyo, 1992. To appear inSIAM J. Opt.

    Google Scholar 

  32. Stephen A. Vavasis.Nonlinear Optimization, Complexity Issues. Oxford University Press, Oxford, 1991.

    Google Scholar 

  33. J.P. Warners, T. Terlaky, C. Roos, and B. Jansen. Potential reduction algorithms for structured combinatorial optimization problems. Technical Report 95–88, Delft University of Technology, Delft, 1995.

    Google Scholar 

  34. J.P. Warners, T. Terlaky, C. Roos, and B. Jansen. A potential reduction approach to the frequency assignment problem. Technical Report 95-98, Delft University of Technology, Delft, 1995.

    Google Scholar 

  35. Y. Ye. A new complexity result on minimization of a quadratic function with a sphere constraint. In C.A. Floudas and P.M. Pardalos, editors,Recent Advances in Global Optimization, pages 19–21. Princeton University Press, Princeton, 1992.

    Google Scholar 

  36. Y. Ye. On affine scaling algorithms for nonconvex quadratic programming.Mathematical Programming, 56: 285–300, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  37. Y. Ye and P.M. Pardalos. A class of linear complementarity problems solvable in polynomial time.Linear Algebra and its Applications, 152: 3–17, 1991.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pardalos, P.M., Resende, M.G.C. (1996). Interior Point Methods for Global Optimization. In: Terlaky, T. (eds) Interior Point Methods of Mathematical Programming. Applied Optimization, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3449-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3449-1_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3451-4

  • Online ISBN: 978-1-4613-3449-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics