Advertisement

Interval Computations on the Spreadsheet

  • Eero Hyvönen
  • Stefano De Pascale
Part of the Applied Optimization book series (APOP, volume 3)

Abstract

This paper reviews work on using interval arithmetic as the basis for next generation spreadsheet programs capable of dealing with rounding errors, imprecise data, and numerical constraints. A series of ever more versatile computational models for spreadsheets are presented beginning with classical interval arithmetic and ending with interval constraint satisfaction. In order to demonstrate the ideas, an actual implementation of each model as a class library is presented and its integration with a commercial spreadsheet program is explained.

Keywords

Interval Function Recursive Function Interval Arithmetic Interval Computation Spreadsheet Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    O. Aberth, Precise Numerical Analysis, Wm. C. Brown, Dubuque, Iowa, 1988.zbMATHGoogle Scholar
  2. [2]
    N. Asaithambi, S. Zuhe, and R. E. Moore, “On computing the range of values”, Computing, 1982, Vol. 28, pp. 225–237.MathSciNetCrossRefGoogle Scholar
  3. [3]
    A. B. Babichev, O. B. Kadyrowa, T. P. Kashevarova, A. S. Leshchenko, and A. L. Semenov, “UniCalc, A Novel Approach to Solving Systems of Algebraic Equations”, Interval Computations, 1993, No. 2, pp. 29–47.Google Scholar
  4. [4]
    F. Benhamou, D. McAllester, and P. Van Hentenryck, CLP (Intervals), Research report, LIM University of Marseille, France, 1994 ( Revised).Google Scholar
  5. [5]
    J. H. Bleher, S. M. Rump, U. Kulisch, M. Metzger, Ch. Ullrich, and W. Walter, “FORTRAN-SC: A Study of a FORTRAN Extension for Engineering/Scientific Computation with Access to ACRITH”, Computing, 1987, Vol. 39, November 1987, pp. 93–110.zbMATHGoogle Scholar
  6. [6]
    G. Bohlender, L. B. Rall, Ch. Ullrich, and J. Wolff v. Gudenberg, “PASCAL-SC: a Computer Language for Scientific Computation”, In: Perspectives in Computing, Vol. 17, Academic Press, Orlando, 1987.Google Scholar
  7. [7]
    H. M. Chen and M. H. van Emden, “Adding Interval Constraints to the Moore-Skelboe Global Optimization Algorithm”, In: Reliable Computing, Supplement, Proceedings of Application of Interval Computations, El Paso, Texas, 1995, pp. 54–57.Google Scholar
  8. [8]
    J. C. Cleary, “Logical Arithmetic”, Future Computing Systems, 1987, Vol. 2, No. 2, pp. 125–149.Google Scholar
  9. [9]
    J. H. Davenport, Y. Siret, and E. Tournier, Computer Algebra — Systems and Algorithms for Algebraic Computation, Academic Press, New York, NY, 1993.zbMATHGoogle Scholar
  10. [10]
    E. Davis, “Constraint Propagation with Interval Labels”, Artificial Intelligence, 1987, Vol. 32, pp. 99–118.CrossRefGoogle Scholar
  11. [11]
    S. De Pascale, S. and E. Hyvönen, An Extended Interval Arithmetic Library for MS Excel, Research report, VTT, Technical Research Centre of Finland, Information Technology, Espoo, 1994.Google Scholar
  12. [12]
    J. S. Ely, Prospects for Using Variable Precision Interval Software in C++ for Solving some Contemporary Scientific Problems, Ph. D. dissertation, The Ohio State University, Ohio, 1990.Google Scholar
  13. [13]
    E. R. Hansen, Global Optimization Using Interval Analysis, Marcel Dekker, New York, 1992.zbMATHGoogle Scholar
  14. [14]
    R. J. Hanson, Interval Arithmetic as a Closed Arithmetic System on a Computer, Report 197, Jet Propulsion Laboratory, 1968.Google Scholar
  15. [15]
    E. Hyvönen, “Constraint Reasoning Based on Interval Arithmetic”, In: Proceedings of IJCAI-89, Morgan Kaufmann, Los Altos, USA, 1989, pp. 1193–1198.Google Scholar
  16. [16]
    E. Hyvönen, “Interval Constraint Spreadsheets for Financial Planning”, In: Proceedings of the First International Conference on Artificial Intelligence Applications on Wall Street, IEEE Press, New York, 1991.Google Scholar
  17. [17]
    E. Hyvönen, “Constraint Reasoning Based on Interval Arithmetic — The Tolerance Propagation Approach”, Artificial Intelligence, 1992, Vol. 58, pp. 71–112.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    E. Hyvönen, “Spreadsheets Based on Interval Constraint Satisfaction”, Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 1994, Vol. 8, pp. 27–34.CrossRefGoogle Scholar
  19. [19]
    E. Hyvönen, “Evaluation of Cascaded Interval Function Constraints”, In: D. E. Leasure (editor), Proceedings of International Workshop on Constraint-Based Reasoning at FLAIRS-95, Texas A&M University-Corpus Christi, Melbourne Beach, Florida, April 1995, pp. 69–75.Google Scholar
  20. [20]
    E. Hyvönen and S. De Pascale, LIA InC++: A Local Interval Arithmetic Library, Technical Report, VTT, Technical Research Centre of Finland, Information Technology, Espoo, 1994a.Google Scholar
  21. [21]
    E. Hyvönen and S. De Pascale, GIA InC++: A Global Interval Arithmetic Library, Technical Report, VTT, Technical Research Centre of Finland, Information Technology, Espoo, 1994b.Google Scholar
  22. [22]
    E. Hyvönen and S. De Pascale, CIF InC++: A Library for Cascaded Interval Function Evaluation, Technical Report, VTT, Technical Research Centre of Finland, Information Technology, Espoo, 1994c.Google Scholar
  23. [23]
    E. Hyvönen and S. De Pascale, ICE InC++: A Library for Interval Constraint Equations, Technical Report, VTT, Technical Research Centre of Finland, Information Technology, Espoo, 1994d.Google Scholar
  24. [24]
    E. Hyvönen and S. De Pascale, “InC++ Library Family for Interval Computations”, In: Reliable Computing, Supplement, Proceedings of Application of Interval Computations, El Paso, Texas, 1995, pp. 85–90.Google Scholar
  25. [25]
    E. Hyvönen and S. De Pascale, “Interval Constraint Spreadsheets: An Implementation for Microsoft Excel”, In: Reliable Computing, Supplement, Proceedings of Application of Interval Computations, El Paso, Texas, 1995, pp. 91–101.Google Scholar
  26. [26]
    E. Hyvönen, S. De Pascale, and A. Lehtola, “Interval Constraint Programming in C++”, In: B. Mayoh, E. Tyugu, and J. Penham (editors), Constraint Programming, Springer-Verlag, Berlin (NATO Advanced Science institute edition, 1994.Google Scholar
  27. [27]
    W. M. Kahan, A More Complete Interval Arithmetic, Lecture Notes for a Summer Course at the University of Michigan, 1968.Google Scholar
  28. [28]
    R. B. Kearfott, “Decomposition of Arithmetic Expressions to Improve the Behavior of Interval Iteration for Nonlinear Systems”, Computing, 1991, Vol. 47, No. 2, pp. 169–191.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    J. Keiper, “Interval Arithmetic in Mathematica”, Interval Computations, 1993, No. 3.Google Scholar
  30. [30]
    R. Klatte, U. Kulisch, C. Lawo, M. Rauch, and A. Wiethoff, C-XSC, A C++ Class Library for Extending Scientific Computing, Springer-Verlag, Berlin/Heidelberg/New York, 1993.Google Scholar
  31. [31]
    M. Konopasek and S. Jayaraman, The TK!Solver Book, McGraw-Hill, Berkley, CA, 1984.Google Scholar
  32. [32]
    V. Kornienko, Spreadsheets with Subdefinite Data, Student Diploma Thesis, Novosibirsk State University, 1994 (in Russian).Google Scholar
  33. [33]
    U. Kulisch and W. Miranker, “The Arithmetic of the Digital Computer: A New Approach”, SIAM Review, 1986, Vol. 28, No. 1 (March), pp. 1–40.MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    J. Lee and M. van Emden, Numerical Computation can be Deduction in CHIP, Paper, Department of Computer Science, University of Victoria, Canada, 1991.Google Scholar
  35. [35]
    J. Lee and M. van Emden, Adapting CLP(R) to Floating Point Arithmetic, Paper, Department of Computer Science, University of Victoria, Canada, 1991.Google Scholar
  36. [36]
    Wm. Leler, Constraint Programming Languages — Their Specification and Generation, Addison-Wesley, 1988.Google Scholar
  37. [37]
    O. Lhomme, “Consistency Techniques for Numeric CSPs”, In: Proceedings of IJCAI-93, Morgan Kaufmann, San Mateo, CA, 1993, pp. 232–238.Google Scholar
  38. [38]
    R. E. Moore, Interval Analysis, Prentice Hall Inc., Englewood Cliffs, N. J, 1966.zbMATHGoogle Scholar
  39. [39]
    R. E. Moore, Methods and Applications of Interval Analysis, SIAM Studies in Applied Mathematics, Philadelphia, Pennsylvania, 1979.Google Scholar
  40. [40]
    R. E. Moore, E. R. Hansen, and A. Leclerc, “Rigorous Methods for Global Optimization”, In: Recent Advances in Global Optimization, Princeton University Press, Princeton, 1992, pp. 321–342.Google Scholar
  41. [41]
    W. Older and A. Vellino, “Constraint Arithmetic on Real Intervals”, In: F. Benhamou and A. Colmareur (editors), Constraint Logic Programming, MIT Press, Cambridge, MA, 1993.Google Scholar
  42. [42]
    H. Ratschek and J. Rokne, Computer Methods for the Range of Functions, Ellis Horwood Limited, Chichester, England, 1984.zbMATHGoogle Scholar
  43. [43]
    H. Ratschek and J. Rokne, New Computer Methods for Global Optimization, Ellis Horwood Limited, Chichester, England, 1988.zbMATHGoogle Scholar
  44. [44]
    S. M. Rump, “How Reliable are Results of Computers?/Wie Zuverlässig sind die Ergebnisse Unserer Rechenanlagen?”, In: Jahrbuch Überlicke Mathematik, Bibliographisches Institut, Mannheim, 1983, pp. 163–168.Google Scholar
  45. [45]
    G. Sidebottom and W. Havens, “Hierarchical Arc-Consistency for Disjoint Real Intervals in Constraint Logic Programming”, Computational Intelligence, 1992, Vol. 8, No. 4.Google Scholar
  46. [46]
    S. Skelboe, “Computation of Rational Interval Functions”, BIT, 1974, Vol. 14, No. 1, pp. 87–95.MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    G. Steele, The definition and Implementation of a Computer Programming Language Based on Constraints, Dissertation, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, Massachusetts, 1980.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Eero Hyvönen
    • 1
  • Stefano De Pascale
    • 1
  1. 1.VTT Information TechnologyFinland

Personalised recommendations