Applications of Interval Computations to Regional Economic Input-Output Models

  • Max E. Jerrell
Part of the Applied Optimization book series (APOP, volume 3)


Economic input-output models are empirical realizations of general equilibrium economic models. They are particularly useful in determining how various industrial sectors of the economy are interrelated and in predicting how these sectors respond to changes in economic activity. In the United States state and regional models are frequently used to help formulate local economic policy. Wassily Leontief is generally credited with the first useful implementation [5].


Final Demand Gross National Product Interval Computation Wage Income Interval Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W. Barth and E. Nuding, “Optimale Lösung von Intervallgleichungssystemen”, Computing, 1984, Vol. 24, pp. 117–125.Google Scholar
  2. [2]
    G. J. D. Hewings, “The Role of Prior Information in Updating Regional Input-Output Models”, Socio-Economic Planning Sciences, 1984, Vol. 18, pp. 319–336.CrossRefGoogle Scholar
  3. [3]
    H. Kelly and A. Wyckoff, “Distorted Image: How government statistics misrepresent the economy”, Technology Review, February/March 1989, pp. 52–60.Google Scholar
  4. [4]
    R. Klatte, U. Kulisch, A. Wiethoff, C. Lawo, and M. Rauch, C-XSC: A C++ Class Library for Extended Scientific Computing, Springer-Verlag, Berlin, 1993.zbMATHGoogle Scholar
  5. [5]
    W. Leontief, The Structure of the American Economy, 1919–1939, 2nd edition, Oxford University Press, N. Y., 1951.Google Scholar
  6. [6]
    G. Lorenzen, Adaptive Verfahren der Input-Output Analyse (Studien zur angewandten Wirtschaftsforschung und Statistik, Heft 17 ), Vandenhoeck & Ruprecht, Göttingen, 1985.Google Scholar
  7. [7]
    G. Lorenzen, “Input-output multipliers when data are incomplete or unreliable”, Environment and Planning A, 1989, Vol. 21, pp. 1075–1092.CrossRefGoogle Scholar
  8. [8]
    G. Lorenzen and C. Maas, “Zur Input-Output Analyse mit Intervalldaten”, Jahrbücher für Nationalökonomie und Statistik, 1989, Vol. 206/3, G. Fischer Verlag, Stuttgart, pp. 257–263Google Scholar
  9. [9]
    T. Maier, Intervall-Input-Output-Rechnung, Verlag Anton Hain, Meisenheim, 1985.zbMATHGoogle Scholar
  10. [10]
    W. H. Miernyk, Input-Output Analysis, Random House, N.Y., 1965.Google Scholar
  11. [11]
    A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.zbMATHGoogle Scholar
  12. [12]
    D. Olson and S. Lindall, Micro IMPLAN User’s Guide, Version 91-F, Minnesota IMPLAN Group, Inc., 1994.Google Scholar
  13. [13]
    H. W. Richardson, Input-Output and Regional Economics, Halsted Press, N.Y., 1972.Google Scholar
  14. [14]
    J. Rohn, “Input-Output Planning with Inexact Data”, Freiburger Intervall-Berichte, 1978, Vol. 78/9.zbMATHGoogle Scholar
  15. [15]
    J. Rohn, “Input-Output Model with Interval Data”, Econometrica, 1980, Vol. 48, No. 3, pp. 767–769.zbMATHCrossRefGoogle Scholar
  16. [16]
    J. Rohn and V. Kreinovich, “Computing exact componentwise bounds on solutions of linear systems with interval data is NP-hard,” SIAM J. Matr. Anal Appl, 1995, Vol. 16, pp. 415–420.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    G. R. West, “A Stochastic Analysis of an Input-Output Model”, Econometrica, 1986, Vol. 54, No. 2, pp. 363–374.zbMATHCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Max E. Jerrell
    • 1
  1. 1.College of Business AdministrationNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations