Skip to main content

Global Optimization Problems in Computer Vision

  • Chapter
Book cover State of the Art in Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 7))

Abstract

In the field of computer vision, computer scientists extract knowledge from an image by manipulating it through image transforms. In the mathematical language of image algebra an image transformation often corresponds to an image-template product. When performing this operation on a computer, savings in time and memory as well as a better fit to the specific computer architecture can often be achieved by using the technique of template decomposition. In this paper we use global optimization techniques to solve a general problem of morphological template decomposition.

This research was partially supported by US Air Force Contract F08635-89-C-0134.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. H.C. Andrews and B.R. Hunt. Digital Image Restoration. Prentice Hall, Reading, MA, 1977.

    Google Scholar 

  2. D.H. Ballard and C.M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, NJ, 1982.

    Google Scholar 

  3. J.W. Cooley, PA. Lewis, and P.D. Welch. The fast Fourier transform and its applications. IEEE Trans. Educ., E-12(1): 27–34, 1969.

    Article  Google Scholar 

  4. R. Cuninghame-Green. Minimax Algebra: Lecture Notes in Economics and Mathematical Systems 166. Springer-Verlag, New York, 1979.

    MATH  Google Scholar 

  5. P.D. Gader. Separable decompositions and approximations for gray-scale morphological templates. CGVIP, 53: 288–296, July 1991.

    MATH  Google Scholar 

  6. P.D. Gader and E.G. Dunn. Image algebra and morphological template decomposition. In Aerospace Pattern Recognition, volume 1098 of Proceedings of SPIE, pages 134–145. Orlando, FL, March 1989.

    Google Scholar 

  7. A.M. Geoffrion and R.E. Marsten. Integer programming algorithms: A framework and a state of the art survey. Management Science, 18: 465–491, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  8. R.C. Gonzalez and P. Wintz. Digital Image Processing. Addison-Wesley, Reading, MA, second edition, 1987.

    Google Scholar 

  9. R.C. Gonzalez and R.E. Woods. Digital Image Processing. Addison-Wesley, Reading, MA, 1992.

    Google Scholar 

  10. E.L. Johnson H. Crowder and M.W. Padberg. Solving large-scale zero-one linear programming problems. Operations Research, 31: 803–834, 1982.

    Google Scholar 

  11. R.M. Haralick and L.G. Shapiro. Computer and Robot Vision, volume I. Addison-Wesley, New York, 1992.

    Google Scholar 

  12. H. J. A. M. Heijmans. Mathematical morphology: A modern approach in image processing based on algebra and geometry. SIAM Review, 37(1):1–36, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  13. N. Karmarkar and K. Ramakrishnan. Computational results of an interior point algorithm for large scale linear programming. Mathematical Programming, 52: 555–585, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Li and G. X. Ritter. Decomposition of separable and symmetric convex templates. In Image Algebra and Morphological Image Processing, volume 1350 of Proceedings of SPIE, pages 408–418, San Diego, CA, July 1990.

    Google Scholar 

  15. Z.Z. Manseur and D.C. Wilson. Decomposition methods for convolution operators. Computer Vision, Graphics, and Image Processing, 53 (5): 428–434, 1991.

    MATH  Google Scholar 

  16. G. Matheron. Elements pour une Theorie des Milieux Poreux. Masson, Paris, 1967.

    Google Scholar 

  17. G. Matheron. Random Sets and Integral Geometry. Wiley, New York, 1975.

    MATH  Google Scholar 

  18. P.M. Pardalos and Y. Li. Integer programming. In C.R. Rao, editor, Handbook of Statistics, volume 9, pages 279–302. Elsevier, 1993.

    Google Scholar 

  19. S. Takriti P.D. Gader. Local decomposition of gray-scale morphological templates. Journal of Mathematical Imaging and Vision, 2: 39–50, 1992.

    Article  Google Scholar 

  20. G.X. Ritter. Image algebra with applications. Unpublished manuscript.

    Google Scholar 

  21. G.X. Ritter. Image algebra. Technical Report CCVR-92-1, University of Florida Center for Computer Vision and Visualization, Gainesville, FL, 1992.

    Google Scholar 

  22. G.X. Ritter. Image Algebra, unpublished manuscript, available via anonymous ftp from ftp.cis.ufl.edu in /pub/ia/documents, 1994.

    Google Scholar 

  23. G.X. Ritter and P. Sussner. The minimax eigenvector transform. In Image Algebra and Morphological Image Processing III, Proceedings of SPIE, San Diego, CA, July 1992.

    Google Scholar 

  24. G.X. Ritter and J.N. Wilson. Image algebra: A unified approach to image processing. In Medical Imaging, volume 767 of Proceedings of SPIE, Newport Beach, CA, February 1987.

    Google Scholar 

  25. G.X. Ritter, J.N. Wilson, and J.L. Davidson. AFATL standard image algebra. Technical Report TR 87–04, University of Florida CIS Department, October 1987.

    Google Scholar 

  26. G.X. Ritter, J.N. Wilson, and J.L. Davidson. Image algebra: An overview. Computer Vision, Graphics, and Image Processing, 49 (3): 297–331, March 1990.

    Article  Google Scholar 

  27. G.X. Ritter and H. Zhu. The generalized matrix product and its applications. Journal of Mathematical Imaging and Vision, 1 (3): 201–213, 1992.

    Article  MathSciNet  Google Scholar 

  28. L. Schräge. Linear, Integer and Quadratic Programming with LINDO. The Scientific Press, Palo Alto, CA, 1983.

    Google Scholar 

  29. J. Serra. Introduction a la morphologie mathematique. Booklet no. 3, cahiers du centre de morphologie mathematique, Fontainebleau, France, 1969.

    Google Scholar 

  30. J. Serra. Image Analysis and Mathematical Morphology. Academic Press, London, 1982.

    MATH  Google Scholar 

  31. J. Serra. Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances. Academic Press, New York, 1988.

    Google Scholar 

  32. University of Florida Center for Computer Vision and Visualization, Gainesville. Handbook of Image Algebra, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Sussner, P., Pardalos, P.M., Ritter, G.X. (1996). Global Optimization Problems in Computer Vision. In: Floudas, C.A., Pardalos, P.M. (eds) State of the Art in Global Optimization. Nonconvex Optimization and Its Applications, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3437-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3437-8_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3439-2

  • Online ISBN: 978-1-4613-3437-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics