Advertisement

Mutagenicity of Selected Chemicals in ViciaFaba and AlliumCepa Test Systems

  • R. Rieger
  • A. Michaelis
  • I. Schubert
  • B. Kaina
  • K. Heindorff

Abstract

The broad or horse bean, Vicia faba (2n = 12), has widely been used to study the capability of physical and chemical agents to induce chromosome and/or chromatid aberrations, to investigate the kinetics of aberration origination, and to study the influence of the metabolic state of the cells on the effect of mutagenic agents (1–6). The standard karyotype consists of five pairs of acrocentric, nearly equally long chromosomes and one pair of metacentric satellite chromosomes; a number of structurally reconstructed karyotypes have been developed whose chromosomes are all easily distinguishable by morphological criteria. These karyotypes are of special value for the investigation of the patterns of aberration distribution along individual chromosomes (7, 8).

Keywords

Allium Cepa Vicia Faba Allium Species Ethyl Methane Chromo Soma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ford, C. E. Proc. 8. Int. Congr. Genetics, Hereditas, Lund (Suppl.) 570–574 (1949).Google Scholar
  2. 2.
    Wolff, S. In: Advances in Radiobiology, G. C. de Hevesy et al., Eds., Oliver & Boyd, Edinburgh, 1957, pp. 463–469.Google Scholar
  3. 3.
    Reveil, S. H. Mutat. Res. 3: 34–53 (1966).CrossRefGoogle Scholar
  4. 4.
    Evans, H. J. Int. Rev. Cytol. 13: 221–321 (1962).CrossRefGoogle Scholar
  5. 5.
    Kihlman, B. A. Actions of Chemicals on Dividing Cells. Prentice-Hall, Englewood Cliffs, N. J., 1966.Google Scholar
  6. 6.
    Rieger, R., and Michaelis, A. Die Chromosomenmutationen. VEB Gustav Fischer Verlag, Jena, 1967.Google Scholar
  7. 7.
    Michaelis, A., and Rieger, R. Chromosoma 35: 1–8 (1971).CrossRefGoogle Scholar
  8. 8.
    Döbel, P., Rieger, R., and Michaelis, A. Chromosoma 43: 409–422 (1973).CrossRefGoogle Scholar
  9. 9.
    Rieger, R., and Michaelis, A. Kulturpflanze 8: 230–243 (1960).CrossRefGoogle Scholar
  10. 10.
    Kihlman, B. A. Chromosoma 51: 11–18 (1975).CrossRefGoogle Scholar
  11. 11.
    Schubert, I., Sturelid, S., Döbel, P., and Rieger, R. Mutat. Res. 59: 27–38 (1979).CrossRefGoogle Scholar
  12. 12.
    Rieger, R., Michaelis, A., Schubert, I., Döbel, P., and Jank, I.-W. Mutat. Res. 27: 69–79 (1975).CrossRefGoogle Scholar
  13. 13.
    Schubert, I., and Rieger, R. Mutat. Res. 44: 337–344 (1977).CrossRefGoogle Scholar
  14. 14.
    Sjödin, J. Hereditas 66: 215–232 (1970).CrossRefGoogle Scholar
  15. 15.
    Ahmed, M., and Grant, W. F. J. Genet. Cytol 14: 157–165 (1972).Google Scholar
  16. 16.
    Asp, B. Mutat. Res. 21: 22 (1973).CrossRefGoogle Scholar
  17. 17.
    Bempong, M. A. Bull. Torr. Bot. Club 99: 113–118 (1972).CrossRefGoogle Scholar
  18. 18.
    Bempong, M. A., and Newsone, Y. L. Can. J. Genet. Cytol. 14: 655–666 (1972).Google Scholar
  19. 19.
    Buiatti, M., and Nuti-Ronchi, V. Caryologia. 16: 397–403 (1963).Google Scholar
  20. 20.
    Caspersson, T., Zech, L., Modest, E. J., Foley, G. E., Wagh, U., and Simonsson, E. Exptl. Cell Res. 58: 128–140 (1969).CrossRefGoogle Scholar
  21. 21.
    Deysson, G. C. R. Soc. Biol. (Paris) 168: 687–693 (1974).Google Scholar
  22. 22.
    Deysson, G., and Truhaut, R. C. R. Acad. Sci. (Paris) Ser. D 268: 83–85 (1969).Google Scholar
  23. 23.
    Döbel, P. Biol. Zbl. 89: 481–495 (1970).Google Scholar
  24. 24.
    Fucik, V., Michaelis, A., and Rieger, R. Biochem. Biophys. Res. Commun. 13: 366–371 (1963).CrossRefGoogle Scholar
  25. 25.
    Gichner, T., Michaelis, A., and Rieger, R. Biochem. Biophys. Res. Commun. 11: 120–124 (1963).CrossRefGoogle Scholar
  26. 26.
    Gläss, E. Zeitschr. Botanik 43: 359 (1955).Google Scholar
  27. 27.
    Gläss, E. Zeitschr. Botanik 44: 1–58 (1956).Google Scholar
  28. 28.
    Gläss, E. Chromosomal 8: 260–284 (1956).CrossRefGoogle Scholar
  29. 29.
    Hartley-Asp, B. Hereditas 83: 223–236 (1976).CrossRefGoogle Scholar
  30. 30.
    Hussein, H. A. S., and Abdalla, M. M. F. Egypt. J. Genet. Cytol. 246–258 (1974).Google Scholar
  31. 31.
    Hussein, H. A. S., Heakel, M. Y., and Fayed, M. A. Egypt. J. Genet. Cytol. 3: 299 (1974).Google Scholar
  32. 32.
    Izard, C. C. R. Acad. Sci. (Paris) Ser. D 274: 1660–1662 (1972).Google Scholar
  33. 33.
    Jacob, K. M., and Wolff, S. Int. Rad. Biol. 15: 519–523 (1969).CrossRefGoogle Scholar
  34. 34.
    Kaul, B. L. Mutat. Res. 7: 43–49 (1969).CrossRefGoogle Scholar
  35. 35.
    Kaul, B. L. Chromosoma 26: 469–474 (1969).CrossRefGoogle Scholar
  36. 36.
    Kaul, B. L. Naturwiss. 57: 455–456 (1970).ADSCrossRefGoogle Scholar
  37. 37.
    Keller, R. Arch. Julius Klaus-Stift. Vererbungsforsch. Sozialanthropol. Rassenhyg. 43 (Suppl.): 105–112 (1968).Google Scholar
  38. 38.
    Kihlman, B. A. Rad. Bot. 1: 35–41 (1961).CrossRefGoogle Scholar
  39. 39.
    Kihlman, B. A. Rad. Bot. 1.: 43–50 (1961).CrossRefGoogle Scholar
  40. 40.
    Kihlman, B. A. In: Chemical Mutagens - Principles and Methods for Their Detection, Vol. 2, A. Hollaender, Ed., New York, 1971, pp. 489–515.Google Scholar
  41. 41.
    Kihlman, B. A., Hartley-Asp, B., Nilsson, K., and Sturelid, S. Mutat. Res. 21: 191–192 (1973).Google Scholar
  42. 42.
    Kihlman, B. A., and Sturelid, S. Hereditas 88: 35–41 (1978).CrossRefGoogle Scholar
  43. 43.
    Kihlman, B. A., Sturelid, S., Hartley-Asp, B., and Nilsson, K. Mutat. Res. 17: 271–275 (1973).CrossRefGoogle Scholar
  44. 44.
    Kihlman, B. A., Sturelid, S., Hartley-Asp, B., and Nilsson, K. Mutat. Res. 26: 105–122 (1974).CrossRefGoogle Scholar
  45. 45.
    Kihlman, B. A., Sturelid, S., Palitti, F., and Becchetti, A. Mutat. Res. 46: 130–131 (1977).Google Scholar
  46. 46.
    Kumar, S., Aggarwal, U. U., and Swaminathan, M. S. Mutat. Res. 4: 155–162 (1967).CrossRefGoogle Scholar
  47. 47.
    Lilly, L. J. Nature 207: 433–434 (1965).ADSCrossRefGoogle Scholar
  48. 48.
    Loveless, A. Nature 167: 338–342 (1951).ADSCrossRefGoogle Scholar
  49. 49.
    Merz, T. Science 133: 329–330 (1961).ADSCrossRefGoogle Scholar
  50. 50.
    Michaelis, A., and Rieger, R. Züchter 30: 150–163 (1960).Google Scholar
  51. 51.
    Michaelis, A., and Rieger, R. Nature: 199: 1014–1015 (1963).ADSCrossRefGoogle Scholar
  52. 52.
    Michaelis, A., and Rieger, R. Kulturpflanze 11: 403–415 (1963).CrossRefGoogle Scholar
  53. 53.
    Michaelis, A., and Rieger, R. In: Induction of Mutations and the Mutation Process, Czechoslov. Akad. Sci., Praha, 1965, pp. 101–106.Google Scholar
  54. 54.
    Michaelis, A., Nicoloff, H., and Rieger, R. Biochem. Biophys. Res. Commun. 9: 280–284 (1962).CrossRefGoogle Scholar
  55. 55.
    Mohandas, R., and Grant, W. F. Can. J. Genet. Cytol. 14: 773–783 (1972).Google Scholar
  56. 56.
    Moutschen, J. Hereditas 46: 471–480 (1960).CrossRefGoogle Scholar
  57. 57.
    Moutschen-Dahmen, J., and Degraeve, N. Experientia 21: 200–202 (1965).CrossRefGoogle Scholar
  58. 58.
    Moutschen-Dahmen, J., and Moutschen-Dahmen, M. Hereditas 44: 415–446 (1958).CrossRefGoogle Scholar
  59. 59.
    Moutschen-Dahmen, J., and Moutschen-Dahmen, M. Experientia 15: 310–311 (1959).CrossRefGoogle Scholar
  60. 60.
    Moutschen-Dahmen, J., and Moutschen-Dahmen, M. Experientia 19: 144–145 (1963).CrossRefGoogle Scholar
  61. 61.
    Moutschen-Dahmen, J., and Moutschen-Dahmen, M. Rad. Bot. 3: 297–310 (1963).CrossRefGoogle Scholar
  62. 62.
    Moutschen-Dahmen, M., Ehrenberg, L., and Moutschen, J. Rad. Bot 5:. 271 (1965).CrossRefGoogle Scholar
  63. 63.
    Natarajan, A. T. EMS Newsletter 6: 22 (1972).Google Scholar
  64. 64.
    Natarajan, A. T., and Ahnström, G. Chromosoma 28: 48–61 (1969).CrossRefGoogle Scholar
  65. 65.
    Natarajan, A. T., and Upadhya, M. D. Chromosoma 15: 156–169 (1964).CrossRefGoogle Scholar
  66. 66.
    Nicoloff, H., Rieger, R., and Michaelis, A. Genetics and Plant Breeding (Sofia) 3: 325–332 (1970).Google Scholar
  67. 67.
    Ninan, T., and Wilson, B. B. Genetica 40: 103–119 (1969).CrossRefGoogle Scholar
  68. 68.
    Nuti-Ronchi, V. Buiatti, M., and Ipata, P. L. Mutat. Res. 4: 315–321 (1967).CrossRefGoogle Scholar
  69. 69.
    Obe, G. Mutat. Res. 13: 421–424 (1971).CrossRefGoogle Scholar
  70. 70.
    Obe, G. Umschau 11: 359–360 (1972).Google Scholar
  71. 71.
    Ockey, C. H. J. Genetics 55: 525–549 (1957).CrossRefGoogle Scholar
  72. 72.
    Ockey, C. H. In: Chemische Mutagenese, Deut. Akad., 1960, pp. 47–53.Google Scholar
  73. 73.
    Panosyan, G. A., and Tamrazyan, E. E. Sov. Genet. 9: 561–565 (1973); Genetika 9 (5): 36–42 (1973).Google Scholar
  74. 74.
    Revell, S. H. In: Effect of Ionizing Radiations on Seeds, IAEA, Vienna, 1961, pp. 229–242.Google Scholar
  75. 75.
    Rieger, R. In: Induction of Mutations and the Mutation Process, J. Velemínský and T. Gichner, Eds., Czechoslovak Acad. Sci., Praha, 1965, pp. 85–100.Google Scholar
  76. 76.
    Rieger, R. Mutat. Res. 21: 232 (1973).Google Scholar
  77. 77.
    Rieger, R., and Michaelis, A. Chromosoma 10: 163–178 (1959).CrossRefGoogle Scholar
  78. 78.
    Rieger, R., and Michaelis, A. Chromosoma 11: 673–581 (1961).Google Scholar
  79. 79.
    Rieger, R., and Michaelis, A. Biol. Zbl. 80: 301–317 (1961).Google Scholar
  80. 80.
    Rieger, R., and Michaelis, A. Kulturpflanze 10: 212–292 (1962).CrossRefGoogle Scholar
  81. 81.
    Rieger, R., and Michaelis, A. Exptl. Cell Res. 31: 202–205 (1963).CrossRefGoogle Scholar
  82. 82.
    Rieger, R., and Michaelis, A. Mutat. Res. 1: 109–112 (1964).CrossRefGoogle Scholar
  83. 83.
    Rieger, R., and Michaelis, A. Nature 206: 741–742 (1965).ADSCrossRefGoogle Scholar
  84. 84.
    Rieger, R., Nicoloff, H., and Michaelis, A. Biol. Zbl. 82: 393–412 (1963).Google Scholar
  85. 85.
    Rieger, Michaelis, A., Schubert, I., and Meister, A. Mutat. Res. 20: 295–298 (1963).Google Scholar
  86. 86.
    Roy, S. C. Indian J. Exptl. Biol. 10: 244–246 (1972).Google Scholar
  87. 87.
    Scalera, S. E., and Ward, O. G. Mutat. Res. 12: 71–79 (1971).CrossRefGoogle Scholar
  88. 88.
    Schubert, I., and Rieger, R. Experientia 32: 854–855 (1976).CrossRefGoogle Scholar
  89. 89.
    Schubert, I., and Rieger, R. Mutat. Res. 35: 79–90 (1976).CrossRefGoogle Scholar
  90. 90.
    Shan, V. C., Rao, S. R. V., and Arora, O. P. Nucleus (Calcutta) 25 92–96 (1972).Google Scholar
  91. 91.
    Shan, V. C., Rao, S. R. V., and Arora, O. P. Indian J. Exptl. Biol. 10: 431–435 (1972).Google Scholar
  92. 92.
    Shan, V. C., Rao, S. R. V., and Arora, O. P. Indian J. Biochem. Biophys. 9: 251–253 (1972).Google Scholar
  93. 93.
    Sidorov, B. N., Sokolov, N. N., and Andreev, V. S. Sov. Genet. 2 (7): 81–87 (1966); Genetika 2 (7): 124–122 (1966).Google Scholar
  94. 94.
    Singh, M. P., Kalia, C. S., and Gupta, M. Proc. Int. Congr. Genet. (Tokyo) 12: 116 (1968).Google Scholar
  95. 95.
    Sjödin, J. Hereditas 67: 155–180 (1970).CrossRefGoogle Scholar
  96. 96.
    Sjödin, J. Hereditas 68: 1–34 (1971).CrossRefGoogle Scholar
  97. 97.
    Slotova, J., Karpfel, Z., and Kubickova, D. Biol. Plant. 16: 21–27 (1974).CrossRefGoogle Scholar
  98. 98.
    Sturelid, S. Hereditas 68: 255–276 (1971).CrossRefGoogle Scholar
  99. 99.
    Sturelid, S., and Kihlman, B. A. EMS Newsletter 3: 15–17 (1970).Google Scholar
  100. 100.
    Sturelid, S., and Kihlman, B. A. Hereditas 79: 29–42 (1975).CrossRefGoogle Scholar
  101. 101.
    Sturelid, S., and Kihlman, B. A. Hereditas 80: 233–246 (1975).CrossRefGoogle Scholar
  102. 102.
    Swietlinska, Z., and Zuk, J. Mutat. Res. 26: 89–97 (1974).CrossRefGoogle Scholar
  103. 103.
    Utsumi, S. Japan. J. Genet. 46: 125–134 (1971).CrossRefGoogle Scholar
  104. 104.
    Wachtmeister, C. A., Moutschen-Dahmen, M., Moutschen, J., and Ehrenberg, L. Rad. Bot. 3: 187–192 (1963).CrossRefGoogle Scholar
  105. 105.
    Wakonig, R., and Arnason, T. J. Abstracts X Int. Congr. Genet. Vol. II, 1958, p. 305.Google Scholar
  106. 106.
    Wakonig, R., and Arnason, T. J. Can. J. Bot. 37: 403–411 (1959).CrossRefGoogle Scholar
  107. 107.
    Ward, O. G., and Glover, D. V. Abstracts XI Int. Bot. Congr., 1969, p. 232.Google Scholar
  108. 108.
    Wolff, S. Mutat. Res. 21: 349 (1973).Google Scholar
  109. 109.
    Wolff, S., and Cleaver, J. E. Mutat. Res. 20: 71–76 (1973).CrossRefGoogle Scholar
  110. 110.
    Wu, T.-P. Taiwania 17: 248–254 (1972).Google Scholar
  111. 111.
    Wuu, K. D., and Grant, W. F. Nucleus (Calcutta) 10: 37–46 (1967).Google Scholar
  112. 112.
    Levan, A. Proc. 8th Int. Congr. Genet., Hereditas (Suppl.), 1949, pp. 325–337.Google Scholar
  113. 113.
    Sax, K., and Sax, H. J. Proc. Natl. Acad. Sci. (U.S.) 55: 1431–1435 (1966).ADSCrossRefGoogle Scholar
  114. 114.
    Benbadis, M.-C. C. R. Acad. Sci. (Paris) Ser. D 260: 268–270 (1965).Google Scholar
  115. 115.
    Biesele, J. J., Berger, R. E., Clarke, M., and Weiss, L. Exptl. Cell Res. (Suppl. 2 ): 279–303 (1952).Google Scholar
  116. 116.
    Grant, W. F. Can. J. Genet. Cytol. 15: 658 (1973).MathSciNetGoogle Scholar
  117. 117.
    Kalia, C. S., and Singh, M. P. Caryologia 26: 347–355 (1973).Google Scholar
  118. 118.
    Reiss, J. Experientia 27: 971–972 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • R. Rieger
    • 1
  • A. Michaelis
    • 1
  • I. Schubert
    • 1
  • B. Kaina
    • 1
  • K. Heindorff
    • 1
  1. 1.Zentralinstitut für Genetik und Kulturpflanzenforschung der Akademie der Wissenschaften der DDRGaterslebenGerman Democratic Republic

Personalised recommendations