Physico-Chemical Characterization of Enzyme-Loaded Cellulose Acetate Membranes

  • W. Pusch
  • S. Kato
Part of the Polymer Science and Technology book series (volume 16)


Transport phenomena occurring in biological membrane systems are not only correlated with differences of the chemical and/or electrochemical potentials of the solutes and solvent across the membranes but rather with chemical reactions taking place at the membrane surfaces or within the membranes. The chemical reactions governing or affecting transport across biological membranes are essentially catalyzed by enzymes attached to the membrane matrices. For that reason, biological membranes contain immobilized enzymes and/or complete enzyme systems (organelles). The transport phenomena controlled by enzyme reactions are sometimes termed “active transport”. In this connection, it should be noted that by far not all transport phenomena coupled with chemical reactions deserve the term “active transport” [1]. Most of those transport phenomena correlated with a chemical reaction rather ought to be named “facilitated or coupled transport” [2,3,4,5]. Nevertheless, it is appropriate to use synthetic membranes, containing immobilized enzymes, in order to model transport phenomena occuring in biological systems coupled with enzyme reactions. Several authors have previously reported on such systems [6,7,8,9].


Immobilize Enzyme Electrolyte Concentration External Solution Ionogenic Group Anion Exchange Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Katchalsky; in: “Permeability and Function of Biological Membranes,” L. Bolis, A. Katchalsky, R. D. Keynes, W. R. Loewenstein and B. A. Pethica, eds., North-Holland Publishing Co., Amsterdam, 1970, pp. 20 — 35.Google Scholar
  2. 2.
    W. D. Stein; “The Movement of Molecules Across Cell Membranes,” Academic Press, New York, 1976.Google Scholar
  3. 3.
    W. J. Ward, III; in: “Recent Developments in Separation Science,” Vol. I, N.N. Li, ed., CRC-Press, Cleveland, OH. 1972, pp. 153–161.Google Scholar
  4. 4.
    R. W. Baker, M. E. Tuttle, D. J. Kelly and H. K. Lonsdale; J. Membrane Sci., 2 (1977) 213.CrossRefGoogle Scholar
  5. 5.
    E. L. Cussler; A. I. Ch. E. J., 17 (1971) 1300.Google Scholar
  6. 6.
    R. Blumenthal, S. R. Caplan and O. Kedem; Biophys. J., 7 (1967) 735.CrossRefGoogle Scholar
  7. 7.
    G. B. Tanny, O. Kedem and Z. Bohak; J. Membrane Sci., 4 (1979) 363.CrossRefGoogle Scholar
  8. 8.
    J. Meyer, F. Sauer and D. Woermann; Ber. Bunsenges, physik. Chem., 74 (1970) 245.Google Scholar
  9. 9.
    D. Thomas and S. R. Caplan; in: “Membrane Separation Processes,” P. Meares, ed., Elsevier, Amsterdam, 1976, pp. 351 — 397.Google Scholar
  10. 10.
    S. Kato, M. Aizawa and S. Suzuki; J. Membrane Sci., 1 (1976) 289; 2 (1977) 39; and 2 (1977) 125.CrossRefGoogle Scholar
  11. 11.
    M. Aizawa, A. Morioka and S. Suzuki; J. Membrane Sci., 4 (1978) 221.CrossRefGoogle Scholar
  12. 12.
    L. C. Clark; in: “Enzyme Engineering,” L. B. Wingard, ed., Wiley-Interscience, New York, 1972, p. 377.Google Scholar
  13. 13.
    H.-U. Demisch and W. Pusch J. Electochem. Soc., 123 (1976) 370.CrossRefGoogle Scholar
  14. 14.
    H.-U. Demisch and W. Pusch, J. Colloid Interface Sci., 69 (1979) 247.CrossRefGoogle Scholar
  15. 15.
    H.-U. Demisch and W. Pusch; J. Colloid Interface Sci., in press.Google Scholar
  16. 16.
    R. Schlögl; Z. Phys. Chem., N.F., 1 (1954) 305.CrossRefGoogle Scholar
  17. 17.
    W. Pusch; Desalination, 16 (1975) 65.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • W. Pusch
    • 1
  • S. Kato
    • 2
  1. 1.Max-Planck-Institut für BiophysikFrankfurt am MainGermany
  2. 2.Department of Physiology School of MedicineYamaguchi UniversityUbeJapan

Personalised recommendations