Skip to main content

Cohesive Strength of Amorphous Polymers at Low and High Temperatures

  • Chapter
  • 225 Accesses

Part of the book series: Cryogenic Materials Series ((CRYMS))

Abstract

A force of 6 nN is required to break a carbon-to-carbon bond1. It therefore follows that polycarbonate in which an area of 1 mm2 is traversed by about 1012 molecular chains ought to survive a stress of 2000 MNm−2 assuming one chain out of three parallels the direction of the applied load. However, the tensile yield strength of polycarbonate2 is 62 MNm−2. Obviously, the initial assumption is a fallacy. It can not be the right way to get an answer to the question - How strong are polymers really?

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Kelly, “Strong Solids”, 2nd edition. Clarendon Press, Oxford, 1973 p. 12

    Google Scholar 

  2. Modern Plastic Encyclopedia 1979–1980 p.511

    Google Scholar 

  3. I. M. Ward, “Review: The Yield Behaviour of Polymers”, J. Material Sci. 6 (1971), 1397–1417

    Article  CAS  Google Scholar 

  4. S. S. Sternstein, “Yielding Modes in Glassy Polymers” in “Polymeric Materials”, ed. E. Baer, American Society for Metals, Metals Park, OHIO, 1975

    Google Scholar 

  5. P. B. Bowden “The Yield Behaviour of Glassy Polymers” in “The Physics of Glassy Polymers” ed. R. N. Haward, Applied Science Publishers Ltd, London, 1973.

    Google Scholar 

  6. S. Yamini, R. J. Young, “The Mechanical Properties of Epoxy Resins”, J. Material Sci. 15 (1980), 1814–1822.

    Article  CAS  Google Scholar 

  7. E. R. Robertson, “An Equation for the Yield Stress of a Glassy Polymer”, Appl. Polym. Symposia 7 (1968), 201–213.

    Google Scholar 

  8. A. S. Argon, “A Theory for the Low Temperature Plastic Deformation of Glassy Polymers” Phil. Mag. 28 (1973), 839–865.

    Article  CAS  Google Scholar 

  9. A.S. Argon, M.J. Bessonov, “Plastic Deformation in Polyimides, with new implications on the Theory of Plastic Deformation of Glassy Polymers”, Phil. Mag. 35 (1977), 917–933.

    Article  CAS  Google Scholar 

  10. P. B. Bowden and S. Raha, “A Molecular Model for Yield and Flow in Amorphous Glassy Polymers making use of a Dislocation Analogue”, Phil. Mag. 29 (1974) 149–166.

    Article  CAS  Google Scholar 

  11. M. Kitagawa, “Power Law Relationship Between Yield Stress and Shear Modulus for Glassy Polymers”, J. Polym. Sei. Phys. Ed. (1977), 1601–161 1.

    Article  Google Scholar 

  12. H. Eyring, “Viscosity, Plasticity and Diffusion as Examples of Absolute Reaction Rates”, J. Chem. Phys. 4 (1936), 283–291.

    Article  CAS  Google Scholar 

  13. M. Fischer, F. Lohse, R. Schmid, “Struktureller Aufbau und Physikalisches Verhalten Vernetzter Epoxidharze” Markomol. Chem. 181 (1980), 1251–1287.

    Article  CAS  Google Scholar 

  14. D. Evans, J. T. Morgan, G. B. Stapleton, “Epoxy Resins for Superconducting Magnet Encapsulation”, Rutherford Laboratory Report SNB 90 2376454 (1972).

    Google Scholar 

  15. C. Bauwens-Crowet, J. C. Bauwens, G. Homes, “Tensile Yield—Stress Behaviour of Glassy Polymers”, J. Polym, Sei, Part A-2, 7 (1969), 735–742.

    Article  CAS  Google Scholar 

  16. K. Oberbach, H. W. Paffrath, “Dehn- und Festigkeitsverhalten von Kunststoffen im Zeitstand Zugversuch”, Materialprufung 4, (1962) 291–296.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Fischer, M. (1982). Cohesive Strength of Amorphous Polymers at Low and High Temperatures. In: Hartwig, G., Evans, D. (eds) Nonmetallic Materials and Composites at Low Temperatures. Cryogenic Materials Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3365-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3365-4_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3367-8

  • Online ISBN: 978-1-4613-3365-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics