Lap Test of Epoxide Resin at Cryogenic Temperatures

  • S Nishijima
  • T Okada
Part of the Cryogenic Materials Series book series (CRYMS)


The reasons why the expected performance of superconducting magnets is not easily achieved are because of instabilities such as training and degradation. Impregnation or potting techniques have been employed in order to modify such instabilities. Epoxide resin has been selected in this work from the range of impregnating materials (eg woods metal,1 epoxy2 5 and wax6) because epoxide resins have been shown to possess excellent adhesive strength and satisfactory mechanical properties at cryogenic temperatures.


Compressive Test Adhesive Strength Cryogenic Temperature Interface Failure Cohesive Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K Kuroda,Cryogenics 15 (1975) 675.CrossRefGoogle Scholar
  2. 2.
    V W Edwards, C A Scott, M N Wilson, IEEE Trans. Mag-11 (1975) 532.Google Scholar
  3. 3.
    OP Anashkin, V A Varlakhin, V E Keilin, A V Krivikh, V V Lyikov, IEEE Trans. Mag-13 (1977) 673.Google Scholar
  4. 4.
    S G Ladkany and Z L Stone, Nonmetallic Material and Composites at Low Temperatures, ed. A F Clark et al, Plenum Press NY (1979) p377.Google Scholar
  5. 5.
    Z N Sanjana and M A Janocko, ibid (1979) p387.Google Scholar
  6. 6.
    P F Smith, B Colyer, Cryogenics 15 (1975) 201.CrossRefGoogle Scholar
  7. 7.
    M Wilson, IEEE Trans. Mag-13 (1977) 440.Google Scholar
  8. 8.
    Y Iwasa, R Kensley, J E C Williams, IEEE Trans. Mag-13 (1979) 20.Google Scholar
  9. 9.
    Y Iwasa, R Kenslay, L E C Williams, IEEE Trans. Mag-13 (1979) 36.Google Scholar
  10. 10.
    G Hartwig, IEEE Trans. Mag-11 (1975) 536.Google Scholar
  11. 11.
    B Fallou, MT-5 Rome July (1975) 644.Google Scholar
  12. 12.
    G Hartwig, CEC Boulder Aug. No D-2 (1977).Google Scholar
  13. 13.
    R P Reed, R E Schramm, A F Clark,Cryogenics 13 (1973) 67.CrossRefGoogle Scholar
  14. 14.
    Van de Voorde,IEEE Trans. Nucl. Sci. 3 (1973) 693.CrossRefGoogle Scholar
  15. 15.
    J Thoris, J C Bobo, CEC-6 Grenoble May (1976) 271.Google Scholar
  16. 16.
    EL Stone, L O El-Marazki, W C Young, ICEC Munich July (1978) 283.Google Scholar
  17. 17.
    MB Kasen,Cryogenics 15 (1975) 327.CrossRefGoogle Scholar
  18. 18.
    S Nishijima, T Okada,Cryogenics 20 (1980) 86.CrossRefGoogle Scholar
  19. 19.
    GR Imel, P V Kelsey, E H Ottewitte,J. Nuclear Material 85 and 86 (1976) 367.Google Scholar
  20. 20.
    RH Kernohan, C J Long, R R Coltman,J. Nuclear Materia 85 and 86 (1976) 379.Google Scholar
  21. 21.
    SO Hong, P F Michaelson, I N Sviatoslavsky, W C Young, ICMC Boulder, August CA-8 (1977).Google Scholar
  22. 22.
    K J Froelich, C M Fitzpatrick, ORNL/TM-5658 (1976).Google Scholar
  23. 23.
    T Okada, S Nishijima, T Horiuchi, to be submitted to Applied Superconductivity Conference, Santa Fe, Sept. 29–Oct. 2 (1980).Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • S Nishijima
    • 1
  • T Okada
    • 1
  1. 1.Department of Nuclear EngineeringOsaka UniversitySuita OsakaJapan

Personalised recommendations