Thomas-Fermi and Related Theories of Atoms and Molecules

  • Elliott H. Lieb
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 74)


In recent years some of the properties of the Thomas Fermi (TF) and related theories for the ground states of non relativistic atoms and molecules with fixed nuclei have been established in a mathematically rigorous way. The aim of these notes is to summarize that work to date--at least as far as the author’s knowledge of the subject goes. In addition, some open problems in the subject will be stated.


Compact Support Trial Function Nuclear Charge Strict Convexity Fermi Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, R.A., 1975, Sobolev Spaces ( Academic Press, New York).MATHGoogle Scholar
  2. Balàzs, N., 1967, “Formation of stable molecules within the statistical theory of atoms,” Phys. Rev. 156, 42–47.ADSCrossRefGoogle Scholar
  3. Baumgartner, B., 1976, “The Thomas-Fermi theory as result of a strong-coupling-limit,” Commun. Math. Phys. 47, 215–219.MathSciNetADSCrossRefGoogle Scholar
  4. Baxter, J.R., 1980, “Inequalities for potentials of particle systems,” I11. J. Math. 24, 645–652.MathSciNetMATHGoogle Scholar
  5. Benguria, R., 1979, “The von Weizsäcker and exchange corrections in Thomas-Fermi theory,” (Ph.D. thesis, Princeton University).Google Scholar
  6. Benguria, R., 1981, “Dependence of the Thomas-Fermi Energy on the Nuclear Coordinates,” Commun. Math. Phys., to appear.Google Scholar
  7. Benguria, R., H. Brezis, E.H. Lieb, 1981, “The Thomas-Fermi-von Weizsäcker theory of atoms and molecules,” Commun. Math. Phys. 79, 167–180 (1981).MathSciNetGoogle Scholar
  8. Benguria, R., E.H. Lieb, 1978, “Many-body potentials in Thomas Fermi theory,” Ann. of Phys. (NY) 110, 34–45.MathSciNetADSCrossRefGoogle Scholar
  9. Benguria, R., E.H. Lieb, 1978, “The positivity of the pressure in Thomas-Fermi theory,” Commun. Math. Phys. 63, 193–218. Errata 71, 94 (1980).MathSciNetADSCrossRefGoogle Scholar
  10. Berestycki H., P.L Lions, 1980, “Existence of stationary states in nonlinear scalar field equations,” in Bifurcation Phenomena in Mathematical Physics and Related Topics, C. Bardos D.Bessis (eds.) (D. Reidel, Dordrecht), 269–292. See also “Nonlinear Scalar field equations, Parts I and II,” Arch. Rat. Mech. Anal., 1981, in press.Google Scholar
  11. Brezis, H., 1978, “Nonlinear problems related to the Thomas-Fermi equation,” in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, G.M. de la Penha, L.A. Medeiros (eds.), ( North Holland, Amsterdam ), 81–89.CrossRefGoogle Scholar
  12. Brezis, H., 1980, “Some variational problems of the Thomas Fermi type,” in Variational Inequalities and Complementarity Problems Theory and Applications, R.W. Cottle, F. Giannessi, J L. Lions (eds.), ( Wiley, New York ), 53–73.Google Scholar
  13. Brezis, H., E.H. Lieb, 1979, “Long range atomic potentials in Thomas-Fermi theory,” Commun. Math. Phys. 65, 231–246.MathSciNetADSMATHCrossRefGoogle Scholar
  14. Brezis, H., L. Veron, 1980, “Removable singularities of nonlinear elliptic equations,” Arch. Rat. Mech. Anal. 75, 1–6.MathSciNetMATHCrossRefGoogle Scholar
  15. Caffarelli, L.A., A. Friedman, 1979, “The free boundary in the Thomas-Fermi atomic model,” J. Diff. Equ. 32, 335–356.MathSciNetMATHCrossRefGoogle Scholar
  16. Deift, P., W. Hunziker, B. Simon, E. Vock, 1978, “Pointwise Bounds on eigenfunctions and wave packets in N-body quantum systems IV,” Commun. Math. Phys. 64, 1–34.MathSciNetADSMATHCrossRefGoogle Scholar
  17. Dirac, P.A.M., 1930, “Note on exchange phenomena in the Thomas-Fermi atom,” Proc. Camb. Phil. Soc. 26, 376–385.ADSMATHCrossRefGoogle Scholar
  18. Fermi, E., 1927, “Un metodo statistico per la determinazione di alcune priorieta dell’atome,” Rend. Accad. Naz. Lincei 6, 602–607.Google Scholar
  19. Firsov, O. B., 1957, “Calculation of the interaction potential of atoms for small nuclear separations,” Zh. Eksper. i Teor. Fiz. 32, 1464. [English transl. Sov. Phys. JETP 5, 1192–1196 (1957]. See also Sov. Phys. JETP 6, 534–537 (1958) and 7, 308–311 (1958).Google Scholar
  20. Fock, V., 1932, “Über die Gültigkeit des Virialsatzes in der Fermi-Thomas’sehen Theorie,” Phys. Z. Sowjetunion 1, 747–755.MATHGoogle Scholar
  21. Gilbarg, D., N. Trudinger, 1977, Elliptic Partial Differential Equations of Second Order, ( Springer Verlag, Heidelberg).MATHGoogle Scholar
  22. Gombas, P., 1949, Die statistischen Theorie des Atomes und ihre Anwendungen ( Springer Verlag, Berlin).Google Scholar
  23. Hille, E., 1969, “On the Thomas-Fermi equation,” Proc. Nat. Acad. Sci. ( USA ) 62, 7–10.MathSciNetADSMATHCrossRefGoogle Scholar
  24. Hoffmann-Ostenhof, M., T. Hoffmann-Ostenhof, R. Ahlrichs, J. Morgan, 1980, “On the exponential falloff of wave functions and electron densities,” Springer Lecture Notes in Physics, 116, 62–67.MathSciNetADSCrossRefGoogle Scholar
  25. Hoffmann-Ostenhof, T., 1980, “A comparison theorem for differential inequalities with applications in quantum mechanics,” J. Phys. A13, 417–424.MathSciNetADSMATHGoogle Scholar
  26. Jensen, H., 1933, “Über die Gültigkeit des Virialsatzes in der Thomas-Fermischen Theorie,” Z. Phys. 81, 611–624.ADSMATHCrossRefGoogle Scholar
  27. Kato, T., 1957, “On the eigenfunctions of many-particle systems in quantum mechanics,” Commun. Pure Appl. Math. 10, 151–171.MATHCrossRefGoogle Scholar
  28. Lee, C.E., C.L. Longmire, M.N. Rosenbluth, 1974, “Thomas-Fermi calculation of potential between atoms,” Los Alamos Scientific Laboratory Report LA-5694-MS.CrossRefGoogle Scholar
  29. Liberman, D.A., E.H. Lieb, 1981, “Numerical calculation of the Thomas Fermi-von Weizsäcker function for an infinite atom without electron repulsion,” Los Alamos National Laboratory Report -- in preparation.Google Scholar
  30. Lieb, E.H., 1974, “Thomas-Fermi and Hartree-Fock theory,” Proc. Int. Cong. Math., Vancouver, vol. 2, pp. 383–386.Google Scholar
  31. Lieb, E.H., 1976, “The stability of matter,” Rev. Mod. Phys. 48, 553–569.MathSciNetADSCrossRefGoogle Scholar
  32. Lieb, E.H., 1977, “Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation,” Stud, in Appl. Math. 57, 93–105.MathSciNetGoogle Scholar
  33. Lieb, E.H., 1979, “A lower bound for Coulomb energies” Phys. Lett. 70A, 444–446.MathSciNetCrossRefGoogle Scholar
  34. Lieb, E.H., 1981a, “A variational principle for many-fermion systems,” Phys. Rev. Lett. 46, 457–459.MathSciNetADSCrossRefGoogle Scholar
  35. Lieb, E.H., 1981b, “Analysis of the Thomas-Fermi-von Weizsäcker equation for an atom without electron repulsion,” in preparationGoogle Scholar
  36. Lieb, E.H., S. Oxford, 1981, “An improved lower bound on the indirect Coulomb energy,” Int. J. Quant. Chem. 19, 427–439.CrossRefGoogle Scholar
  37. Lieb, E.H., B. Simon, 1977, “The Thomas-Fermi theory of atoms, molecules and solids,” Adv. in Math. 23, 22–116. These results were first announced in “Thomas-Fermi theory revisited,” Phys. Rev. Lett. 31, 681–683 (1973). An outline of the proofs was given in (Lieb, 1974 ).MathSciNetCrossRefGoogle Scholar
  38. Lieb, E.H., B. Simon, 1978, “Monotonicity of the electronic contribution to the Born-Oppenheimer energy,” J. Phys. Bll, L537–542.MathSciNetADSGoogle Scholar
  39. Lieb, E.H., W. Thirring, 1975, “A bound for the moments of the eigenvalues of the Schroedinger Hamiltonian and their relation to Sobolev inequalities,” in Studies in Mathematical Physics: Essays in Honor of Valentine Bargmann, edited by E.H. Lieb, B. Simon, A.S. Wightman (Princeton University Press, Princeton), 269–303.Google Scholar
  40. March, N.H., 1957, “The Thomas-Fermi approximation in quantum mechanics,” Adv. in Phys. 6, 1–98.ADSCrossRefGoogle Scholar
  41. Morgan III, J., 1978, “The asymptotic behavior of bound eigenfunctions of Hamiltonians of single variable systems,” J. Math. Phys. 19, 1658–1661.MathSciNetADSMATHCrossRefGoogle Scholar
  42. Morrey, C.B., Jr., 1966, Multiple Integrals in the calculus of variations ( Springer, New York).MATHGoogle Scholar
  43. O’Connor, A.J., 1973, “Exponential decay of bound state wave functions,” Commun. Math. Phys. 32, 319–340.MathSciNetADSCrossRefGoogle Scholar
  44. Reed, M., B. Simon, 1978, Methods of Modern Mathematical Physics, Vol. 4 ( Academic Press, New York ).MATHGoogle Scholar
  45. Scott, J.M.C., 1952, “The binding energy of the Thomas-Fermi atom,” Phil. Mag. 43, 859–867.Google Scholar
  46. Sheldon, J.W., 1955, “Use of the statistical field assumption in molecular physics,” Phys. Rev. 99, 1291–1301.ADSMATHCrossRefGoogle Scholar
  47. Simon, B., 1981, “Large time behavior of the LP norm of Schroedinger semigroups,” J. Func. Anal. 40, 66–83.MATHCrossRefGoogle Scholar
  48. Stampacchia, G., 1965, “Equations elliptiques du second ordre a coefficients discontinus” ( Presses de l’Univ., Montreal).Google Scholar
  49. Teller, E., 1962, “On the stability of molecules in the Thomas-Fermi theory,” Rev. Mod. Phys. 34, 627–631.ADSMATHCrossRefGoogle Scholar
  50. Thirring, W., 1981, “A lower bound with the best possible constant for Coulomb Hamiltonians,” Commun. Math. Phys. 79, 1–7 (1981).MathSciNetADSCrossRefGoogle Scholar
  51. Thomas, L.H., 1927, “The calculation of atomic fields,” Proc. Camb. Phil. Soc. 23, 542–548.ADSMATHCrossRefGoogle Scholar
  52. Torrens, I.M., 1972, Interatomic Potentials ( Academic Press, New York).Google Scholar
  53. Veron, L., 1979, “Solutions singulières d’equations elliptiques semilineaire,” C.R. Acad. Sci. Paris 288, 867–869. This is an announcement; details will appear in “Singular solutions of nonlinear elliptic equations,” J. Non-Lin. Anal.MathSciNetMATHGoogle Scholar
  54. von Weizsäcker, C.F., 1935, “Zur Theorie der Kernmassen,” Z. Phys. 96, 431–458.ADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Elliott H. Lieb
    • 1
  1. 1.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations