Skip to main content

Monte Carlo Renormalization Group

  • Chapter
Phase Transitions Cargèse 1980

Abstract

In 1976, Ma1 made the suggestion of combining Monte Carlo (MC) computer simulations with a real-space renormalization-group (RG) analysis to calculate critical exponents at second-order phase transitions. Since then, numerous authors2–14 have presented various ways of implementing Ma's idea to produce a useful theoretical tool. In these lectures, I will discuss a particular Monte Carlo renormalization-group (MCRG) method that I and several coworkers have been using.7–14 The method is still in the early stages of development, but it has a number of advantages over older methods, and has already produced excellent results for some systems of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.-K. Ma, Renormalization Group by Monte Carlo Methods, Phys. Rev. Lett., 37:461 (1976).

    Article  ADS  Google Scholar 

  2. S.-K. Ma, Alternative Approach to the Dynamic Renormalization Group, Phys. Rev. B, 19:4824 (1979).

    Article  MathSciNet  ADS  Google Scholar 

  3. Z. Friedman and J. Felsteiner, Kadanoff Block Transformation by the Monte Carlo Technique, Phys. Rev. B, 15:5317 (1977).

    Article  ADS  Google Scholar 

  4. A. L. Lewis, Lattice Renormalization Group and the Thermodynamic Limit, Phys. Rev. B, 16:1249 (1977).

    Article  ADS  Google Scholar 

  5. H. Müller-Krumbhaar, Real Space Renormalization for Arbitrary Single-Site Potential, Z. Phys. B, 35:339 (1979).

    Article  ADS  Google Scholar 

  6. P. J. Reynolds, H. E. Stanley, and W. Klein, A Large Cell Monte Carlo Renormalization Group for Percolation, Phys. Rev. B, 21:1223 (1980).

    Article  ADS  Google Scholar 

  7. R. H. Swendsen, Monte Carlo Renormalization Group, Phys. Rev. Lett., 42:859 (1979).

    Article  ADS  Google Scholar 

  8. R. H. Swendsen and S. Krinsky, Monte Carlo Renormalization Group and Ising Models with n ≥ 2, Phys. Rev. Lett., 43:177 (1979).

    Article  ADS  Google Scholar 

  9. H. W. J. Blöte and R. H. Swendsen, First-Order Phase Transitions and the Three-State Potts Model, Phys. Rev. Lett., 43:799 (1979).

    Article  ADS  Google Scholar 

  10. H. W. J. Blöte and R. H. Swendsen, Critical Behavior of the Three-Dimensional Ising Model, Phys. Rev. B, 20:2077 (1979).

    Article  ADS  Google Scholar 

  11. R. H. Swendsen, Monte Carlo Renormalization Group Studies of the d = 2 Ising Model, Phys. Rev. B, 20:2080 (1979).

    Article  ADS  Google Scholar 

  12. C. Rebbi and R. H. Swendsen, Monte Carlo Studies of the q-state Potts Model in Two Dimensions, Phys. Rev. B, 21:4094 (1980).

    Article  ADS  Google Scholar 

  13. M. Novotny, D. P. Landau, and R. H. Swendsen, Monte Carlo Renormalization Group Study of the Baxter-Wu Model, preprint.

    Google Scholar 

  14. D. P. Landau and R. H. Swendsen, Tricritical Universality in Two Dimensions, preprint.

    Google Scholar 

  15. K. Binder, Monte Carlo Investigations, in “Phase Transitions and Critical Phenomena,” C. Domb and M. S. Green, eds., Academic, New York (1976).

    Google Scholar 

  16. Th. Niemeijer and J. M. J. Van Leeuwen, Renormalization: Ising-Like Spin Systems, in “Phase Transitions and Critical Phenomena,” C. Domb and M. S. Green, eds., Academic, New York (1976).

    Google Scholar 

  17. K. G. Wilson and R. H. Swendsen, unpublished.

    Google Scholar 

  18. M. Fisz, “Probability Theory and Mathematical Statistics”, Wiley, New York (1963).

    MATH  Google Scholar 

  19. H. Müller-Krumbhaar and K. Binder, Dynamic Properties of the Monte Carlo Method in Statistical Mechanics, J. of Stat. Phys., 8:1 (1973).

    Article  ADS  Google Scholar 

  20. It is possible to use finite-size scaling to extract information from the height of the peak (χmax ∼ Nγ λ) , but this introduces a fourth parameter, and we still have not accounted for corrections to scaling. See, M. E. Fisher, in Proceedings of the Enrico Fermi International School of Physics, M. S. Green, ed., Academic Press, New York (1971); M. E. Fisher and A. E. Ferdinand, Interfacial, Boundary, and Size Effects at Critical Points, Phys. Rev. Lett., 19:169 (1967); A. E. Ferdinand and M. E. Fisher, Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice, Phys. Rev., 185:832 (1969).

    Google Scholar 

  21. R. H. Swendsen and R. K. P. Zia, The Surprising Effectiveness of the Migdal-Kadanoff Renormalization Scheme, Phys. Lett., 69A:382 (1979).

    MathSciNet  ADS  Google Scholar 

  22. R. J. Baxter, Partition Function of the Eight-Vertex Lattice Model, Ann. Phys. (N.Y.), 70:193 (1972).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. R. B. Potts, in Proceedings of the Cambridge Philos. Soc., 48:106 (1952).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. R. J. Baxter and F. Y. Wu, Exact Solution of an Ising Model with Three-Spin Interactions, Phys. Rev. Lett., 31:1294 (1973).

    Article  ADS  Google Scholar 

  25. B. Nienhuis, A. N. Berker, E. K. Riedel, and M. Schick, First-and Second-Order Phase Transitions in Potts Models: Renormalization-Group Solution, Phys. Rev. Lett., 43:737 (1979).

    Article  ADS  Google Scholar 

  26. R. J. Baxter, Potts Model at the Critical Temperature, J. Phys. C., 6:L445 (1973).

    Article  ADS  Google Scholar 

  27. M. Nauenberg and D. J. Scalapino, Singularities and Scaling Functions at the Potts-Model Multicritical Point, Phys. Rev. Lett., 44:837 (1980).

    Article  ADS  Google Scholar 

  28. F. J. Wegner, Corrections to Scaling Laws, Phys. Rev. B, 5:4529 (1972).

    Article  ADS  Google Scholar 

  29. F. J. Wegner and E. K. Riedel, Logarithmic Corrections to the Molecular-Field Behavior of Critical and Tricritical Systems, Phys. Rev. B, 7:248 (1973).

    Article  ADS  Google Scholar 

  30. K. G. Wilson, Monte Carlo Calculations for the Lattice Gauge Theory, Lectures at Les Houches, France (1980).

    Google Scholar 

  31. K. G. Wilson, private communication.

    Google Scholar 

  32. M. P. M. den Nijs, A Relation Between the Temperature Exponents of the 8-Vertex and q-State Potts Model, J. Phys. A., 12:1857 (1979).

    Article  ADS  Google Scholar 

  33. R. B. Pearson, to be published.

    Google Scholar 

  34. B. Niehnuis, E. K. Riedel, and M. Schick, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Swendsen, R.H. (1982). Monte Carlo Renormalization Group. In: Lévy, M., Le Guillou, JC., Zinn-Justin, J. (eds) Phase Transitions Cargèse 1980. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3347-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3347-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3349-4

  • Online ISBN: 978-1-4613-3347-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics