The Problem of Confluent Singularities

  • Bernie G. Nickel


The numerical verification of the validity of universality and hyperscaling from series expansions of model systems cannot be separated from the question of the existence of confluent singularities. Confluent singular behavior in the critical region is expected on the basis of a formal analysis1 of Wilson’s renormalization group picture but the problem that remains from the point of view of the series mechanician is that series coefficients represent “experimental” data and the exponential fitting of data is known to be horribly unstable.


Ising Model Critical Exponent Ratio Method General Spin Series Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. J. Wegner, Corrections to scaling laws, Phys. Rev. B. 5:4529 (1972).ADSCrossRefGoogle Scholar
  2. 2.
    B. G. Nickel and B. Sharpe, On hyperscaling in the Ising model in three dimensions, J. Phys. A:Math. Gen. 12:1819 (1979).ADSCrossRefGoogle Scholar
  3. 3.
    J. J. Rehr, Confluent singularities and hyperscaling in the spin ½ Ising model, J. Phys. A:Math. Gen. 12:L179 (1979).ADSCrossRefGoogle Scholar
  4. 4.
    J. C. LeGuillou and J. Zinn-Justin, Critical exponents from field theory, Phys. Rev. B 21:3976 (1980) and Critical exponents for the n-vector model in three dimensions from field theory, Phys. Rev. Lett. 39:95 (1977).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    D. S. Gaunt and A. J. Guttmann, Asymptotic analysis of coefficients, in: “Phase transitions and critical phenomena” vol III, C. Domb and M. S. Green, eds. , Academic Press, London (1974).Google Scholar
  6. 6.
    J. Oitmaa and J. Ho-Ting-Hun, The critical exponent γ for the three-dimensional Ising model, J. Phys. A:Math. Gen. 12: L281 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    A. J. Guttmann and G. S. Joyce, On a new method of series analysis in lattice statistics, J. Phys. A:Gen. Phys. 5: L81 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    M. Wortis, Linked cluster expansion, in: “Phase transitions and critical phenomena” vol III, C. Domb and M. S. Green, eds., Academic Press, London (1974).Google Scholar
  9. 9.
    B. R. Heap, The enumeration of homeomorphically irreducible star graphs, J. Math. Phys. 7:1582 (1966).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    D. S. Gaunt and M. F. Sykes, The critical exponent γ for the three-dimensional Ising model, J. Phys. A:Math. Gen. 12:L25 (1979).ADSCrossRefGoogle Scholar
  11. 11.
    T. T. Wu, B. M. McCoy, C. A. Tracy, and E. Barouch, Spin-spin correlation functions for the two-dimensional Ising model: Exact theory in the scaling region, Phys. Rev. B 13:316 (1976)ADSCrossRefGoogle Scholar
  12. 12.
    M. F. Sykes, D. S. Gaunt, P. D. Roberts, and J. A. Wyles, High temperature series for the susceptibility of the Ising model. I. Two dimensional lattices, J. Phys. A:Gen. Phys. 5:624 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    S. McKenzie, High-temperature reduced susceptibility of the Ising model, J. Phys. A:Math. Gen. 8:L102 (1975).ADSCrossRefGoogle Scholar
  14. 14.
    S. McKenzie, The exponent γ for the spin ½ ising model on the face-centered cubic lattice, J. Phys. A:Math. Gen. 12:L185 (1979).ADSCrossRefGoogle Scholar
  15. 15.
    A. Aharony and G. Ahlers, Universal ratios among correction-to-scaling amplitudes and effective critical exponents, Phys. Rev. Lett. 44:782 (1980).ADSCrossRefGoogle Scholar
  16. 16.
    M. Chang and A. Houghton, Universal ratios among correction-to-scaling amplitudes on the coexistence curve, Phys. Rev. Lett. 44:785 (1980).ADSCrossRefGoogle Scholar
  17. 17.
    M. Ferer, Amplitude universality and confluent corrections to scaling for Ising models, Phys. Rev. B 16:419 (1977).ADSCrossRefGoogle Scholar
  18. 18.
    D. M. Saul, M. Wortis, and D. Jasnow, Confluent singularities and the correction-to-scaling exponent for the d = 3 fcc Ising model, Phys. Rev. B 11:2571 (1975).ADSCrossRefGoogle Scholar
  19. 19.
    M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions”, Dover, New York (1965).Google Scholar
  20. 20.
    R. Schrader, New rigorous inequality for critical exponents in the Ising model, Phys. Rev. B 14:172 (1976).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    J. W. Essam and D. L. Hunter, Critical behavior of the Ising model above and below the critical temperature, J. Phys. C 1:392 (1968).ADSCrossRefGoogle Scholar
  22. 22.
    G. R. Golner and E. K. Reidel, Scaling-field approach to the isotropic n-vector model in three dimensions, Phys. Lett. 58A:11 (1976).ADSGoogle Scholar
  23. 23.
    G. A. Baker, Jr., B. G. Nickel, and D. I. Meiron, Critical indices from perturbation analysis of the Callan-Symanzik equation, Phys. Rev. B 17:1365 (1978).ADSCrossRefGoogle Scholar
  24. 24.
    M. E. Fisher and R. J. Burford, Theory of critical-point scattering and correlations. I. The Ising model, Phys. Rev. 156:583 (1967).ADSCrossRefGoogle Scholar
  25. 25.
    B. G. Nickel, D. I. Meiron, and G. A. Baker, Jr., Compilation of 2-pt. and 4-pt. graphs for continuous spin models, University of Guelph report (1977).Google Scholar
  26. 26.
    C. M. Bender, F. Cooper, G. S. Guralnik, and D. H. Sharp, Strong-coupling expansion in quantum field theory, Phys. Rev. D 19:1865 (1979).MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    G. A. Baker, Jr. and J. M. Kincaid, The continuous-spin Ising model, go:ϕ4:d field theory, and the renormalization group, Los Alamos report LA-UR-80-869 (1980).Google Scholar
  28. 28.
    B. G. Nickel, Evaluation of simple Feynman graphs, J. Math. Phys. 19:542 (1978).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    E. Brezin, J. C. LeGuillou, and J. Zinn-Justin, Perturbation theory at large order. I. The ϕ2n interaction, Phys. Rev. D 15:1544 (1977).ADSCrossRefGoogle Scholar
  30. 30.
    E. Brezin and G. Parisi, Critical exponents and large-order behavior of perturbation theory, J. Stat. Phys. 19:269 (1978).MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    E. B. Saff and R. S. Varga, On the zeros and poles of Padé approximants to ez. II, in: “Padé and rational approximation”, E. B. Saff and R. S. Varga, eds., Academic Press, London (1977).Google Scholar
  32. 32.
    R. P. Feynman and A. R. Hibbs, “Quantum mechanics and path integrals”, McGraw-Hill, New York (1965).Google Scholar
  33. 33.
    C. M. Bender and T. T. Wu, Anharmonic oscillator, Phys. Rev. 184:1231 (1969).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Bernie G. Nickel
    • 1
  1. 1.Physics DepartmentUniversity of GuelphGuelphCanada

Personalised recommendations