Skip to main content

Duality in DC Programming

  • Chapter

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 27))

Abstract

We present a duality formula for the (primed) problem

$$ \inf \left\{ {g1\left( x \right)} \right. - g2\left( x \right);h1\left( x \right) - h2\left( x \right) < 0,x \in X\} $$

where \({g_1},{h_1},{g_2},{h_2}:X \to \overline {IR} \) are convex functions on the Hausdorff locally convex vector space X, with g2,h2 in Г (X).

Introducing a suitable dual problem defined from the Legendre-Fenchel conjugates of the data g 1, h 1, g 2, h 2, the duality formula establishes, under a standard qualification condition between g1 and h1, the zero gap between the two optimal values. Although unusual, the strict inequality in the constraint is crucial and convex duality plays an essential part in this (generally) nonconvex duality result. According to the choice of the data, the duality formula we obtain covers various situations in nonconvex and convex optimization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Briec, B. Lemaire, Technical efficiency and distance to a reverse convex set, to appear.

    Google Scholar 

  2. J.-P. Crouzeix, A duality framework in quasiconvex programming, in Generalized concavity in optimization and economics, S. Schaible W.T. Ziemba Eds, Academic Press, New York, 1981, 207–225.

    Google Scholar 

  3. W. Fenchel, Convex cones, sets and functions, Multilith Lecture Notes, University of Princeton, N. J., 1953.

    Google Scholar 

  4. J. Flash, M.A. Pollatschek, Duality theorem for certain programs involving minimum or maximum operations, Math. Progr. 16, 1979, 348–370.

    Article  Google Scholar 

  5. C. Franchetti, I. Singer, Best approximation by elements of caverns in normed linear spaces, Boll. Un. Mat. Ital., (5)17-B, 1980, 33–43.

    MathSciNet  Google Scholar 

  6. J.-B. Hiriart-Urruty, Generalized differentiability, duality and optimization for problems dealing with differences of convex functions, Lecture Notes in Economics and Math. Systems n° 256, J. Ponstein Ed., 1985, 37–69.

    Google Scholar 

  7. J.-B. Hiriart-Urruty, A general formula on the conjugate of the difference of functions, Canad. Math. Bull., Vol. 29 (4), 1986, 482–485.

    Article  MathSciNet  MATH  Google Scholar 

  8. P.J. Laurent, Approximation et Optimisation, Hermann, Paris, 1972.

    MATH  Google Scholar 

  9. B. Lemaire, Duality in reverse convex programming, to appear in Siam Journal on Optimization.

    Google Scholar 

  10. B. Lemaire, M. Voile, A general duality scheme for nonconvex minimization problems with a strict inequality constraint, in preparation.

    Google Scholar 

  11. J.-E. Martínez-Legaz, Quasiconvex duality theory by generalized conjugation methods, Optimization, Vol. 19, 1988, 603–652.

    Article  MathSciNet  MATH  Google Scholar 

  12. J.J. Moreau, Théorèmes inf-sup, C. R. Acad. Sc. Paris, t. 258, 1964, 2720–2722.

    MathSciNet  MATH  Google Scholar 

  13. J.J. Moreau, Fonctionnelles convexes, Séminaire sur les e.d.p., Collège de France, 1966.

    Google Scholar 

  14. M. Moussaoui, M. Voile, Sur la quasicontinuitÇ et les fonctions unies en dualitÇ convexe, C.R. Acad. Sci. Paris, t.322, SÇrie I, 1966, 839–844.

    Google Scholar 

  15. L. Nirenberg, Functional analysis, N.Y. University, 1961.

    Google Scholar 

  16. J.-P. Penot, M. Voile, On quasiconvex duality, Math. Oper. Research, Vol. 4, 1990, 597–625.

    Article  MathSciNet  Google Scholar 

  17. R.T. Rockafellar, Duality theorems for convex functions, Bull. Amer. Math. Soc, Vol. 70, 1964, 189–192.

    Article  MathSciNet  MATH  Google Scholar 

  18. R.T. Rockafellar, Extension of Fenchel’s duality theorem for convex functions, Duke Math. J, Vol. 33, 1966, 81–90.

    Article  MathSciNet  Google Scholar 

  19. A.M. Rubinov, B. Simsek, Dual problems of quasiconvex maximization, Bulletin of the Australian Mathematical Society 51, 1995, 139–144.

    Article  MathSciNet  MATH  Google Scholar 

  20. A.M. Rubinov, B.M. Glover; V. Jeyakumar, A general approach to dual characterizations of solvability of inequality systems with applications, Journal of Convex Analysis 2, 1 /2, 1995, 309–344.

    MathSciNet  Google Scholar 

  21. I. Singer, A Fenchel-Rockafellar type duality theorem for maximization, Bull, of the Austral. Math. Soc. 20, 1979, 193–198.

    Article  MATH  Google Scholar 

  22. I. Singer, Maximization of lower semicontinuous convex functionals on bounded subsets of locally convex spaces. II: Quasi-Lagrangian duality theorems, Result. Math. 3, 1980, 235–248.

    MATH  Google Scholar 

  23. I. Singer, Minimization of continuous convex functionals on complements of convex subsets of locally convex spaces, Math. Oper. Stat. Ser. Optim. 11, 1980, 221–234.

    MATH  Google Scholar 

  24. I. Singer, Optimization by level set methods, VI: Generalization of surrogate type reverse convex duality, Optimization 18, 4, 1987, 485–499.

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Singer, Some further duality theorems for optimization problems with reverse convex constraint sets, J. Math. Anal. Appl. 171, 1, 1992, 205–219.

    Article  MathSciNet  MATH  Google Scholar 

  26. P.T. Thach, Dual problem for reverse convex programs, Preprint Hanoi 1989.

    Google Scholar 

  27. P.T. Thach, R.E. Burkard k W. Oettli, Mathematical programs with a two-dimensional reverse convex constraint, J. Global Optimization, 1991, 145–154.

    MathSciNet  Google Scholar 

  28. P.T. Thach, A nonconvex duality with zero gap and applications, SIAM Journal on Optimization, Feb. 1994, Vol. 4, No 1, 44–64.

    Article  MathSciNet  MATH  Google Scholar 

  29. J.F. Toland, A duality principle for nonconvex optimization and the calculus of variation, Arch. Rat. Mech. Anal., 1979, v. 71, 41–61

    Article  MathSciNet  Google Scholar 

  30. M. Voile, Conjugaison par tranches, Ann. Mat. pura appl., IV, v. 139, 1985, 279–312.

    Article  MathSciNet  Google Scholar 

  31. M. Volle, Conjugaison par tranches et dualité de Toland, Optimization 18, v. 5, 1987, 633–642.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers. Printed in the Netherlands

About this chapter

Cite this chapter

Lemaire, B., Volle, M. (1998). Duality in DC Programming. In: Crouzeix, JP., Martinez-Legaz, JE., Volle, M. (eds) Generalized Convexity, Generalized Monotonicity: Recent Results. Nonconvex Optimization and Its Applications, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3341-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3341-8_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3343-2

  • Online ISBN: 978-1-4613-3341-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics