Skip to main content

Computer Solution of Linear Programs: Non-simplex Algorithms

  • Chapter
Advances in Nonlinear Programming

Part of the book series: Applied Optimization ((APOP,volume 14))

Abstract

The far-reaching advances ushered in by Karmarkar’s pioneering work are rooted in well-known algorithmic paradigms of nonlinear programming/nonlinear equation-solving that have found fundamental new expression within the context of linear programming. We given an overview of interior-point and infeasible-interior-point LP algorithms from this perspective, concentrating on their underlying algebraic and geometric aspects. We formulate the direction-finding problems of primal-dual affine-scaling and potential-reduction algorithms in a unified, self-contained manner. We then explore the basic dichotomy of nonlinear-equation solving—minimizing a merit or potential function vis-a-vis following a homotopy path—which reasserts itself within the LP setting. In particular, this leads to a detailed categorization of homotopy and central paths and enables us to clarify the way in which different path-following algorithms operate. Finally, we observe that practical implementations must draw simultaneously on both potential-based and homotopy-based methods and reassess the popular formulations of Mehrotra’s breakthrough implementation in this light.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, I., Karmarkar, N.K., Resende, M.C.G. and Veiga, G. (1989), “An implementation of Karmarkar’s algorithm for linear programming”,Mathematical Programming, 44, 297–335.

    Article  MathSciNet  MATH  Google Scholar 

  2. Allgower, E.L. and Georg, K. (1990),Numerical Continuation Methods: An Introduction, Vol. 13,Series in Computational Mathematics, Springer- Verlag, Heidelberg.

    Google Scholar 

  3. Andersen, E.D., Gondzio, J., Mészáros, C. and Xu, X. (1996), “Implementation of interior point methods for large scale linear programming”, to appear in T. Terlaky (ed.),Interior Point Methods in Mathematical Programming, Kluwer Academic Publishers.

    Google Scholar 

  4. Anstreicher, K.M. (1996), “Potential-reduction algorithms”, to appear in T. Terlaky (ed.),Interior-Point Methods in Mathematical Programming, Kluwer Academic Publishers.

    Google Scholar 

  5. Bixby, R.E. (1994), “Progress in linear programming”,ORSA J. on Computing, 6, 15–22.

    MathSciNet  MATH  Google Scholar 

  6. CPLEX user’s guide (1993), CPLEX Optimization, Incline Village, Nevada.

    Google Scholar 

  7. Dantzig, G.B. (1963),Linear Programming and Extensions, Princeton University Press, Princeton, New Jersey.

    MATH  Google Scholar 

  8. Dennis, J.E. and Schnabel, R.B. (1983),Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, New Jersey.

    MATH  Google Scholar 

  9. Dikin, I.I. (1967), “Iterative solution of problems of linear and quadratic programming”,Soviet Mathematics Doklady, 8, 674–675.

    MATH  Google Scholar 

  10. Ding, J. and Li, T. (1990), “An algorithm based on weighted logarithmic barrier functions for linear complementarity problems”,Arabian J. Sciences and Engineering, 15, 4(B), 679–685.

    MathSciNet  Google Scholar 

  11. Ding, J. and Li, T. (1991), “A polynomial-time predictor-corrector algorithm for a class of linear complementarity problems, SIAM J. Optimization,, 1, 83–92.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dixon, L.C.W. and Nazareth, J.L. (1996), “Potential functions for non- symmetric sets of linear equations”, presented atSIAM Conference on Optimization, May 20–22, Victoria, B.C., Canada.

    Google Scholar 

  13. El-Bakry, A.S., Tapia, R.A., Zhang, Y. and Tsuchiya, T. (1992), On the formulation and theory of the Newton interior-point method for nonlinear programming, Report TR92-40, Department of Computational and Applied Mathematics, Rice University, Houston, TX (revised April, 1995 ).

    Google Scholar 

  14. Fiacco, A.V. and McCormick, G.P. (1968),Nonlinear Programming: Sequential Unconstrained Minimization Techniques, Wiley, New York.

    MATH  Google Scholar 

  15. Freund, R.M. (1996), “An infeasible-start algorithm for linear programming whose complexity depends on the distance from the starting point to the optimal solution”, to appear inAnnals of Operations Research.

    Google Scholar 

  16. Frisch, K.R. (1955), “The logarithmic potential method for convex programming”, manuscript, Institute of Economics, University of Oslo, Oslo, Norway.

    Google Scholar 

  17. Frisch, K.R. (1956), “La resolution des problemes de programme lineaire par la methode du potential logarithmique”,Cahiers du Seminaire D’Econometrie, 4, 7–20.

    Google Scholar 

  18. Garcia, C.B. and Zangwill, W.I. (1981),Pathways to Solutions, Fixed Points and Equilibria, Prentice-Hall, Englewood Cliffs, New Jersey.

    MATH  Google Scholar 

  19. Gill, P., Murray, W., Saunders, M.A., Tomlin, J.A. and Wright, M.H. (1986), “On projected Newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method”,Mathematical Programming, 36, 183–209.

    Article  MathSciNet  MATH  Google Scholar 

  20. Gill, P.E., Murray, W., Ponceleon, D.B. and Saunders, M.A. (1991), “Primal-dual methods for linear programming”, Report SOL 91-3, Systems Optimization Laboratory, Stanford University, Stanford, California.

    Google Scholar 

  21. Goldman, A.J. and Tucker, A.W. (1956), “Theory of linear programming”, in H.W. Kuhn and A.W. Tucker (eds.),Linear Inequalities and Related Systems, Annals of Mathematical Studies, 38, Princeton University Press, Princeton, New Jersey, 53–97.

    Google Scholar 

  22. Gondzio, J. (1995), “HOPDM (version 2.12) — a fast LP solver based on a primal-dual interior point method”,European J. Oper. Res., 85, 221–225.

    Article  MATH  Google Scholar 

  23. Gonzaga, C.C. (1992), “Path-following methods for linear programming”,SI AM Review, 34, 167–227.

    Article  MathSciNet  MATH  Google Scholar 

  24. Huard, P. (1967), “Resolution of mathematical programming with nonlinear constraints by the method of centers”, in J. Abadie (ed.),Nonlinear Programming, North Holland, Amsterdam, 207–219.

    Google Scholar 

  25. Jansen, B., Roos, C. and Terlaky, T. (1993), “A polynomial primal-dual Dikin-type algorithm for linear programming”, Report No. 93-36, Faculty of Technical Mathematics and Informatics, Delft University of Technology, The Netherlands.

    Google Scholar 

  26. Jansen, B., Roos, C. and Terlaky, T. (1996), “Interior point methods a decade after Karmarkar—a survey, with application to the smallest eigenvalue problem”,Statistica Neerlandica, 50, 146–170.

    Article  MathSciNet  MATH  Google Scholar 

  27. Karmarkar, N (1984), “A new polynomial-time algorithm for linear programming”,Combinatorica, 4, 373–395.

    Article  MathSciNet  MATH  Google Scholar 

  28. Karmarkar, N. (1995), presentation at Conference onMathematics of Numerical Analysis: Real Number Algorithms, August, 1995, Park City, Utah.

    Google Scholar 

  29. Kim, K. and Nazareth, J.L. (1994), “A primal null-space affine scaling method”,ACM Transactions on Mathematical Software, 20, 373–392.

    Article  MathSciNet  MATH  Google Scholar 

  30. Kojima, M., Mizuno, S. and Yoshise, A. (1989), “A primal-dual interior point algorithm for linear programming”, in N. Megiddo (ed.).Progress in Mathematial Programming: Interior-Point and Related Methods, Springer-Verlag, New York, 29–47.

    Google Scholar 

  31. Kojima, M., Mizuno, S. and Yoshise, A. (1991), “AnO \( \left( {\sqrt {nL} } \right)\) iteration potential reduction algorithm for linear complementarity problems”,Mathematical Programming, 50, 331–342.

    Article  MathSciNet  MATH  Google Scholar 

  32. Kojima, M., Megiddo, N. and Mizuno, S. (1993), “A primal-dual infeasible interior point algorithm for linear programming”,Mathematical Programming, 61, 263–280.

    Article  MathSciNet  MATH  Google Scholar 

  33. Kojima, M., Megiddo, N. and Noma, T. (1991), “Homotopy continuation methods for nonlinear complementarity problems”,Mathematics of Operations Research, 16, 754–774.

    Article  MathSciNet  MATH  Google Scholar 

  34. Kranich, E. “Interior point methods in mathematical programming: a bibliography”, available through NETLIB: send e-mail to netlib@research.att.com.

    Google Scholar 

  35. Lustig, I.J. (1991), “Feasibility issues in a primal-dual interior method for linear programming”,Mathematical Programming, 49, 145–162.

    Article  MathSciNet  Google Scholar 

  36. Lustig, I.J., Marsten, R.E. and Shanno, D. (1992), “On implementing Mehrotra’s predictor-corrector interior point method for linear programming”,SIAM J. Optimization, 2, 435–449.

    Article  MathSciNet  MATH  Google Scholar 

  37. Lustig, I.J., Marsten, R.E. and Shanno, D. (1994), “Computational experience with a globally convergent primal-dual predictor-corrector interior algorithm for linear programming”,Mathematical Programming, 66, 123–135.

    Article  MathSciNet  MATH  Google Scholar 

  38. Lustig, I.J., Marsten, R.E. and Shanno, D. (1994), “Interior point methods: computational state of the art”,ORSA J. on Computing, 6, 1–15.

    MathSciNet  MATH  Google Scholar 

  39. McLinden, L. (1980), “The analogue of Moreau’s proximation theorem, with applications to the nonlinear complementarity problem”,Pacific Journal of Mathematics, 88, 101–161.

    MathSciNet  MATH  Google Scholar 

  40. Megiddo, N. (1989), “Pathways to the optimal set in linear programming” in N. Megiddo (ed.).Progress in Mathematial Programming: Interior-Point and Related Methods, Springer-Verlag, New York, 131–158.

    Google Scholar 

  41. Megiddo, N. (1991), “On finding primal- and dual-optimal bases”,ORSA J. on Computing, 3, 63–65.

    MathSciNet  MATH  Google Scholar 

  42. Mehrotra, S. (1991), “Finding a vertex solution using an interior point method”,Linear Algebra and Applications, 152, 233–253.

    Article  MathSciNet  MATH  Google Scholar 

  43. Mehrotra, S. (1992), “On the implementation of a (primal-dual) interior point method”,SIAM J. on Optimization, 2, 575–601.

    Article  MathSciNet  MATH  Google Scholar 

  44. Mizuno, S, (1994), “Polynomiality of infeasible-interior-point algorithms for linear programming”,Mathematical Programming, 67, 109–119.

    Article  MathSciNet  MATH  Google Scholar 

  45. Mizuno, S. and Jarre, F. (1996), “Global and polynomial-time convergence of an infeasible-interior-point algorithm using inexact computation”, Research Memorandum No. 605, The Institute of Statistical Mathematics, Tokyo, Japan.

    Google Scholar 

  46. Mizuno, S., Todd, M.J. and Ye, Y. (1993), “On adaptive step primal- dual interior-point algorithms for linear programming”,Mathematics of Operations Research, 18, 964–981.

    Article  MathSciNet  MATH  Google Scholar 

  47. Mizuno, S., Kojima, M. and Todd, M.J. (1995), “Infeasible-interior- point primal-dual potential-reduction algorithms for linear programming”,SIAM J. on Optimization, 5, 52–67.

    Article  MathSciNet  MATH  Google Scholar 

  48. Monteiro, R.D.C, Adler, I. and Resende, M.G.C. (1990), “A polynomial-time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extension”,Mathematics of Operations Research, 15, 191–214.

    Article  MathSciNet  MATH  Google Scholar 

  49. Nazareth, J.L. (1986), “Homotopy techniques in linear programming”,Algorithmica, 1, 529–535

    Article  MathSciNet  MATH  Google Scholar 

  50. Nazareth, J.L. (1987),Computer Solution of Linear Programs, Oxford University Press, Oxford and New York.

    Google Scholar 

  51. Nazareth, J.L. (1989), “Pricing criteria in linear programming”, in N. Megiddo (ed.),Progress in Mathematical Programming: Interior-Point and Related Methods, Springer-Verlag, New York, 105–129.

    Google Scholar 

  52. Nazareth, J.L. (1991), “The homotopy principle and algorithms for linear programming”,SIAM J. on Optimization, 1, 316–332.

    Article  MathSciNet  MATH  Google Scholar 

  53. Nazareth, J.L. (1994),The Newton/Cauchy Framework: A Unified Approach to Unconstrained Nonlinear Minimization, Lecture Notes in Computer Science, Vol. 769, Springer-Verlag, Heidelberg and Berlin.

    Google Scholar 

  54. Nazareth, J.L. (1994), “Quadratic and conic approximating models in linear programming”,Mathematical Programming Society COAL Bulletin, Vol. 23 (in press).

    Google Scholar 

  55. Nazareth, J.L. (1994), “A reformulation of the central path equations and its algorithmic implications”, Technical Report 94 - 1, Department of Pure and Applied Mathematics, Washington State University, Pullman, Washington.

    Google Scholar 

  56. Nazareth, J.L. (1994), “Deriving potential functions via a symmetry principle for nonlinear equations”, Technical Report 94-2, Department of Pure and Applied Mathematics, Washington State University, Pullman, Washington (to appear inOperations Research Letters).

    Google Scholar 

  57. Nazareth, J.L. (1995), “A framework for interior methods of linear programming”,Optimization Methods and Software, 5, 227–234.

    Article  Google Scholar 

  58. Nazareth, J.L. (1995), “Lagrangian globalization: solving nonlinear equations via constrained optimization”, in Proceedings of the 1995 AMS Summer SeminarMathematics of Numerical Analysis: Real Number Algorithms, J. Renegar, M. Shub and S. Smale (eds.), American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  59. Nazareth, J.L. (1996), “The implementation of linear programming algorithms based on homotopies”,Algorithmica, 15, 332–350.

    Article  MathSciNet  MATH  Google Scholar 

  60. Nazareth, J.L. and Qi, L. (1996), “Globalization of Newton’s method for solving nonlinear equations”,Numerical Linear Algebra with Applications, 3, 239–249.

    Article  MathSciNet  MATH  Google Scholar 

  61. Nesterov, Y.E. and Nemirovsky, A.S. (1994),Interior Point Polynomial Algorithms in Convex Programming, SIAM Studies in Applied Mathematics, Vol. 13, SIAM, Philadelphia.

    Google Scholar 

  62. Oliveira, P.R. and Neto, J.X. (1995), “A unified view of primal methods through Riemannian metrics”, Report ES-363/95, Program for Engineering Systems and Computation, Federal University of Rio de Janeiro, Brazil.

    Google Scholar 

  63. Optimization Subroutine Library (1991), Guide and references, IBM Corporation, Kingston, NY.

    Google Scholar 

  64. Ortega, J.M. and Rheinboldt, W.C. (1970),Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York.

    MATH  Google Scholar 

  65. Potra, F.A. (1996), “An infeasible interior point predictor-corrector algorithm for linear programming”.SIAM J. on Optimization, 6, 19–32.

    Article  MathSciNet  MATH  Google Scholar 

  66. Renegar, J. (1988), “A polynomial-time algorithm, based on Newton’s method, for linear programming”,Mathematical Programming, 54, 59–93.

    Article  MathSciNet  Google Scholar 

  67. Renegar, J. (1995), “Linear programming, complexity theory, and elementary functional analysis”,Mathematical Programming, 70, 279–351.

    MathSciNet  MATH  Google Scholar 

  68. Renegar, J. and Shub, M. (1992), “Unified complexity analysis for Newton LP methods”,Mathematical Programming, 53, 1–16.

    Article  MathSciNet  MATH  Google Scholar 

  69. Roos, C. and den Hertog, D. (1989), “A polynomial method of approximate weighted centers for linear programming”, Report 99-13, Faculty of Technical Mathmematics and Informatics, Delft University of Technology, Delft, The Netherlands.

    Google Scholar 

  70. Saigal, R. (1992), “A simple proof of primal affine scaling method”, Technical Report, Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, Michigan.

    Google Scholar 

  71. Saigal, R. (1995),Linear Programming, Kluwer Academic Publishers, Boston.

    Book  MATH  Google Scholar 

  72. Saunders, M.A. (1994), “Major Cholesky would feel proud”,ORSA J. on Computing, 6, 23–27.

    MATH  Google Scholar 

  73. Seifi, A. and Tuncel, L. (1996), “A constant-potential infeasible-start interior-point algorithm with computational experiments and applications”, Research Report CORR 96 - 07, Department of Combinatorics and Optimization, University of Waterloo, Ontario, Canada.

    Google Scholar 

  74. Sonnevend, G. (1986), “An ‘analytic center’ for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming”, in A. Prekopa, J. Szelezsan and B. Strazicky (eds.).System Modelling and Optimization, Lecture Notes in Control and Information Sciences, Vol. 84, Springer-Verlag, Heidelberg and Berlin, 866–875.

    Google Scholar 

  75. Sonnevend, G., Stoer, J. and Zhao, G. (1990), “On the complexity of following the central path of linear programs by linear extrapolation”,Methods of Operations Research, 62, 19–31.

    MathSciNet  Google Scholar 

  76. Sonnevend, G., Stoer, J. and Zhao, G. (1991), “On the complexity of following the central path of linear programs by linear extrapolation II”,Mathematical Programming, 52, 527–553.

    Article  MathSciNet  MATH  Google Scholar 

  77. Strang, G. (1986),Introduction to Applied Mathematics, Wellesley- Cambridge Press, Cambridge, Massachusetts.

    MATH  Google Scholar 

  78. Tanabe, K. (1988), “Centered Newton method for mathematical programming”, in M. Iri and K Yajima (eds.),Systems Modelling and Optimization, Lecture Notes in Control and Information Sciences, Vol. 113, Springer- Verlag, Heidelberg and Berlin, 197–206.

    Google Scholar 

  79. Todd, M.J. (1995), “Potential-reduction methods in mathematical programming”, to appear inMathematical Programming.

    Google Scholar 

  80. Todd, M.J. and Ye, Y. (1990), “A centered projective algorithm for linear programming”,Mathematics of Operations Research, 15, 508–529.

    Article  MathSciNet  MATH  Google Scholar 

  81. Tseng, P. (1992), “Complexity analysis of a linear complementarity algorithm based on a Lyapunov function”,Mathematical Programming, 53, 297–306.

    Article  MathSciNet  MATH  Google Scholar 

  82. Tseng, P. (1995), “Simplified analysis of an O\( \left( {\sqrt {nL} } \right)\)-iteration infeasible predictor-corrector path-following method for monotone linear complementarity problems”, in R.P. Agarwal (ed.),Recent Trends in Optimization Theory and Applications, World Scientific Publishing Co., 423–434.

    Google Scholar 

  83. Tseng, P. (1996), private communication.

    Google Scholar 

  84. Tsuchiya, T. and Muramatsu, M. (1995), “Global convergence of a long- step affine scaling algorithm for degenerate linear programming problems”,SIAM J. on Optimization, 5, 525–551.

    Article  MathSciNet  MATH  Google Scholar 

  85. Tuncel, L. (1994), “Constant potential primal-dual algorithms: A framework”,Mathematical Programming, 66, 145–159.

    Article  MathSciNet  MATH  Google Scholar 

  86. Tuncel, L. and Todd, M.J. (1995), “On the interplay among entropy, variable metrics and potential functions in interior-point algorithms”, Report CORR 95-20, Department of Combinatorics and Optimization, University of Waterloo, Canada.

    Google Scholar 

  87. Vanderbei, R.J. (1995), “LOQO, an interior point code for quadratic programming”, Technical Report, Program in Statistics and Operations Research, Princeton University, Princeton, New Jersey.

    Google Scholar 

  88. Vanderbei, R.J. (1996),Linear Programming, preprint of forthcoming book.

    MATH  Google Scholar 

  89. Vial, J.P. (1996), “A generic path-following algorithm with a sliding constraint and its application to linear programming and the computation of analytic centers”, Research Report, University of Geneva, Switzerland.

    Google Scholar 

  90. Wang, W. and O’Leary, D.P. (1995), “Adaptive use of iterative methods in interior point methods for linear programming”, preprint, Applied Mathematics Program, University of Maryland, College Park, Maryland.

    Google Scholar 

  91. Wright, M.H. (1992), “Interior methods for constrained optimization”, in A. Iserles (ed.),Acta Numérica 1992, Cambridge University Press, 341–407.

    Google Scholar 

  92. Wright, S.J. (1996),Primal-Dual Interior-Point Methods, SIAM, Philadelphia (in press).

    Google Scholar 

  93. Ye, Y. (1991), “AnO(n 3 L) potential reduction algorithm for linear programming”,Mathematical Programming, 50, 239–258.

    Article  MathSciNet  MATH  Google Scholar 

  94. Ye, Y., Todd, M.J. and Mizuno, S. (1994), “AnO \( \left( {\sqrt {nL} } \right)\)-iterat ion homogenous and self-dual linear programming algorithm”,Mathematics of Operations Research, 19, 53–67.

    Article  MathSciNet  MATH  Google Scholar 

  95. Zhang, Y. (1994), “On the convergence of a class of infeasible interior- point algorithms for the horizontal complementarity problem”,SIAM J. on Optimization, 4, 208–227.

    Article  MATH  Google Scholar 

  96. Zhang, Y. (1995), “LIPSOL: a MATLAB toolkit for linear programming”, Department of Mathematics and Statistics, University of Maryland, Baltimore County, Maryland.

    Google Scholar 

  97. Zhang, Y. and Zhang, D. (1995), “On polynomiality of the Mehrotra- type predictor-corrector interior-point algorithms”,Mathematical Programming, 68, 303–318.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Nazareth, J.L. (1998). Computer Solution of Linear Programs: Non-simplex Algorithms. In: Yuan, Yx. (eds) Advances in Nonlinear Programming. Applied Optimization, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3335-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3335-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3337-1

  • Online ISBN: 978-1-4613-3335-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics