Skip to main content

Low Energy Atom-Atom Collisions

  • Chapter
Atomic and Molecular Collision Theory

Abstract

The semiclassical theory of atom-atom potential scattering and of low energy inelastic atom-atom scattering is reviewed. Particular attention is given to the origin and interpretation of rainbow structure, diffraction oscillations and exchange oscillations in the potential scattering differential cross-section, and to the glory structure and symmetry oscillations in the integral cross-section. Available methods for direct inversion of the cross-section data to recover the potential are reviewed in some detail.

The theory of non-adiabatic transitions is introduced by a short discussion of interaction mechanisms and of diabatic and adiabatic representations. Analytical S matrix elements are presented for two state curve-crossing (Landau-Zener-Stückelberg), Demkov and Nikitin models. The relation between Stückelberg oscillations in the S matrix and in the differential cross-section is discussed in terms of interference between trajectories belonging to two different classical deflection functions. The energy dependences of the inelastic integral cross-section for curve-crossing and Demkov type transitions are also discussed. Finally the theory is reviewed in relation to a recent close-coupled study of fine structure transitions in F(2P) + Xe(1S) scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Toennies, Molecular beam scattering experiments on elastic, inelastic and reactive collisions in Physical Chemistry, an Advanced Treatise, Vol. VI A, Academic Press, New York, Chap. 5 (1974).

    Google Scholar 

  2. H. Pauly, Collision processes, theory of elastic scattering in Physical Chemistry, an Advanced Treatise, Vol. VIB, Academic Press, New York, Cahp. 8 (1974).

    Google Scholar 

  3. U. Buck, Elastic scattering, Adv. Chem. Phys., 30, 313–388(1975).

    Article  Google Scholar 

  4. U. Buck, The inversion of molecular scattering data, Rev. Mod. Phys.. 46, 369–389 (1974).

    MathSciNet  Google Scholar 

  5. H. Pauly, Elastic cross sections: spherical potentials, in Atom-Molecule Collisions ed. R. B. Bernstein, Plenum Press (1979).

    Google Scholar 

  6. M. V. Berry and K. E. Mount, Semiclassical approximations in wave mechanics, Rep. Prog. Phys., 35, 315–397(1972).

    Article  ADS  Google Scholar 

  7. M. S. Child, Molecular collision thery, Academic Press, (1974).

    Google Scholar 

  8. R. B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams, J. Chem. Phys., 33, 795–804(1960).

    Article  ADS  Google Scholar 

  9. J. O. Hirschfelder, C. F. Curtiss and R. B. Bird, Molecular theory of gases and liquids, Wiley (1954).

    MATH  Google Scholar 

  10. H. Faxen and J. Holtsmark, Betrag zur Theorie des Durchgang Langsam Electronen durch Gase, Zeit. Phys., 45, 307–324(1927).

    Article  ADS  Google Scholar 

  11. M. Abramowitz and I. A. Stegun, Handbook of Mathematical functions, Dover,(1967).

    Google Scholar 

  12. M. V. Berry, Uniform approximation for potential scattering involving a rainbow, Proc. Phys. Soc. 89, 479–490(1966).

    Article  ADS  MATH  Google Scholar 

  13. N. F. Mott and H. S. W. Massey, Theory of atomic collisions, 3rd ed. Oxford, (1965).

    Google Scholar 

  14. F. T. Smith, Elastic and inelastic atom-atom scattering, in Lectures in Theoretical Physics: Atomic collision processes XIC, Gordon and Breach,95–118(1969).

    Google Scholar 

  15. R. B. Bernstein, Quantum affects in elastic molecular scattering, Adv. Chem. Phys., 10, 75–134 (1966).

    Google Scholar 

  16. R. B. Bernstein and J. T. Muckerman, in Intermolecular forces ed. J. O. Hirschfelder, pp. 389–486(1967).

    Google Scholar 

  17. N. Levinson, On the uniqueness of the potential in a SchrBdinger equation for a given asymptotic phase, Kgl. Danske. Vid. Selskab. Mat-Fys. Medd. 25, 1–29 (1949).

    MathSciNet  Google Scholar 

  18. R. K. B. Helbing, Additional quantum effects in atom-atom scattering: higher order glory scattering, J. Chem. Phys., 50, 493–500 (1969).

    Article  ADS  Google Scholar 

  19. U. Buck, Determination of intermolecular potentials by the inversion of molecular scattering data I. The inversion procedure, J. Chem. Phys., 54, 1923–1928 (1971).

    Article  ADS  Google Scholar 

  20. U. Buck and H. Pauly, Determination of intermolecular potentials by the inversion of molecular scattering data II. High resolution measurements of differential cross-sections and inversion of the data for Na-Hg, J. Chem. Phys., 54, 1929–1936 (1971).

    Article  ADS  Google Scholar 

  21. R. B. Gerber and M. Shapiro, A numerical method for determination of atom-atom scattering amplitudes from the measured differential cross-sections, Chem. Phys., 13, 227–233 (1976).

    Article  ADS  Google Scholar 

  22. M. Shapiro and R. B. Gerber, Extraction of interaction potentials from the elastic scattering amplitudes: an accurate quantum mechanical procedure, Chem. Phys., 13, 235–242 (1976).

    Article  ADS  Google Scholar 

  23. R. G. Newton, Scattering theory of waves and particles, McGraw-Hill, (1966).

    Google Scholar 

  24. R. G. Newton, Determination of the amplitude from the differential cross-section by unitarity, J. Math. Phys., 9, 2050–2055 (1968).

    Article  ADS  Google Scholar 

  25. R. B. Gerber and M. Karplus, Determination of the phase of the scattering amplitude from the differential cross-section, Phys. Rev. D1, 998–1012 (1970).

    MathSciNet  Google Scholar 

  26. J. T. Rydherg, Graphische Darstellung einiger banenspektropische Ergebnisse, Z. Phys. 73, 376–385 (1931).

    ADS  Google Scholar 

  27. O. Klein, Zur Berechnung von Potentialkurven für zeiatomige Moleküle mit Hilfe von Spektraltermen, Z. Phys. 76, 226–235 (1932).

    Article  ADS  MATH  Google Scholar 

  28. A. L. G. Rees, Calculation of potential energy curves from band-spectroscopic data, Proc. Phys. Soc. (Lond) 59. 998–1003 (1947).

    Article  ADS  MATH  Google Scholar 

  29. O. B. Firsov, Determination of forces between atoms with use of the differential cross-section of elastic scattering, Zh. Eskp. Teor. Fiz. 24, 279–283 (1953).

    Google Scholar 

  30. G. Vollmer, Inverse problem in atom-atom scattering in WKB approach, Z. Phys., 226, 423–434 (1969).

    Article  Google Scholar 

  31. W. H. Miller, WKB solution of inverse problems for potential scattering, J. Chem. Phys. 51, 3631–3638 (1969).

    Article  MathSciNet  ADS  Google Scholar 

  32. W. H. Miller, Additional WKB inversion relations for bound state and scattering problems, J. Chem. Phys., 54, 4174–4177 (1971).

    Article  MathSciNet  ADS  Google Scholar 

  33. R. Feltgen, H. Pauly, F. Torello and H. Vehmeyer, Determination of the He4−He4 repulsive potential up to 0.14ev by inversion of high resolution total cross-section measurements, Phys. Rev. Lett. 30, 820–823 (1973).

    Article  ADS  Google Scholar 

  34. M. S. Child and R. B. Gerber, Inversion of inelastic atom-atom scattering data: recovery of the interaction function, Mol. Phys. 38, 421–432 (1979).

    Google Scholar 

  35. R. B. Gerber, V. Buch and U. Buck, Direct inversion method for obtaining anistropic potentials from rotationally inelastic and elastic cross sections, J. Chem. Phys., 72, 3596–3603.

    Google Scholar 

  36. R. B. Gerber, M. Shapiro, U. Buck and J. Schleusener, Quantum-mechanical inversion of the differential cross-section: determination of the He−Ne potential, Phys. Rev. Lett., 41, 236–239 (1978).

    Article  ADS  Google Scholar 

  37. M. S. Child, Electronic excitation: non adiabatic transitions in Atom-Molecule Collisions ed. R. B. Bernstein, Plenum(1979).

    Google Scholar 

  38. Yu. N. Demkov, Charge transfer at small resonance defects, Sov. Phys. J.E.T.P. 18, 138–142 (1964).

    Google Scholar 

  39. D. S. F. Crothers, A critique of Zwaan-Stlickelberg phase integral techniques, Adv. Phys., 20, 405–451 (1971).

    Google Scholar 

  40. D. S. F. Crothers, Perturbed symmetric resonance: an exact formula, J. Phys., B6, 1418–1425 (1973).

    ADS  Google Scholar 

  41. E. E. Nikitin, Theory of non-adiabatic transitions: recent developments with exponential models, Adv. Q. Chem. 5, 135–184 (1970).

    Google Scholar 

  42. L. D. Landau, Zur Theorie der Energie ubertragung II, Phys. Z. Sowetunion 2, 46–51 (1932).

    MATH  Google Scholar 

  43. C. Zener, Non-adiabatic crossing of energy levels, Proc. R. Soc. London Ser. A 137, 696–702 (1932).

    Article  ADS  Google Scholar 

  44. E. C. G. Stückelberg, Theorie der unelastischen Stosse zwischen Atümen, Helv. Phys. Acta 5, 369–422 (1932).

    Google Scholar 

  45. E. E. Nikitin, Theory of non-adiabatic transitions: recent developments of the Landau-Zener (linear) model in Chemische Elementarprozesse, ed. H. Hartmann, Springer pp. 43–77(1968).

    Google Scholar 

  46. P. K. Janev, Non adiabatic transitions between ionic and covalent states, Adv. Atom. Mol. Phys., 12, 1–38, (1976).

    Article  Google Scholar 

  47. J. B. Delos and W. R. Thorson, Studies of the potential curve crossing problem II General theory and a model for close crossings, Phys. Rev. A6, 728–745(1972), erratum 9, 1026 (1974).

    ADS  Google Scholar 

  48. A. Baranyi, Scattering matrix for curve-crossing collisions, J. Phys. B. 12, L399–L402(1978); Deflection functions for curve-crossing collisions, J. Phys. B. 12, 2841–2855 (1979).

    Google Scholar 

  49. F. T. Smith, Diabatic and adiabatic representations for atomic collision problems, Phys. Rev., 1936, 111–123 (1969).

    Article  ADS  Google Scholar 

  50. M. Baer, Adiabatic and diabatic representations for atom-molecule collisions: treatment of the three-dimensional case, Chem. Phys., 15, 49–57 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  51. L. P. Kotova, Angular distribution in inelastic atomic collisions, Sov. Phys. J.E.T.P. 28, 719–722 (1969).

    Google Scholar 

  52. M. S. Child, Thermal energy scattering of alkali atoms from halogen atoms and molecules. The effect of curve-crossing, Mol. Phys. 16, 313–327 (1969).

    Google Scholar 

  53. A. D. Bandrauk and M. S. Child, Analytical predissociation widths from scattering theory, Mol. Phys., 19, 95–111 (1970).

    Google Scholar 

  54. W. H. Miller and T. F. George, Semiclassical theory of electronic transtions in low energy atomic and molecular collisions involving several degrees of freedom, J. Chem. Phys., 56, 5637–5652 (1972).

    Article  ADS  Google Scholar 

  55. Y. W. Lin, T. F. George and K. Morokuma, Semiclassical treatment of electronic transitions in molecular collisions: H++ D2→ HD++ D, J. Chem. Phys., 60, 4311–4322 (1972).

    Article  ADS  Google Scholar 

  56. W. H. Miller, Uniform semiclassical approximations for elastic scattering and eigenvalue problems, J. Chem. Phys., 48, 464–467 (1968).

    Article  ADS  Google Scholar 

  57. M. S. Child, A uniform approximation for one dimensional matrix elements, Mol. Phys., 29, 1421–1429 (1975).

    Google Scholar 

  58. F. H. Mies, Molecular Theory of atomic collisions: fine-structure transitions, Phys. Rev. A7, 942–956 (1973).

    Google Scholar 

  59. F. H. Mies, Molecular theory of atomic collisions: calculated cross-sections for H+ + F(2P), Phys. Rev. A7, 957–967 (1973).

    ADS  Google Scholar 

  60. R. E. Olson, Two-state StUckelberg-Landau-Zener theory applied to oscillatory inelastic total cross-sections, Phys. Rev. A2, 121–126 (1970).

    ADS  Google Scholar 

  61. G. A. Delvigne and J. Los, The differential cross-section for chemionization in alkali atom — halogen molecule collisions: classical interpretation, Physica (Utrecht) 59, 61–76 (1972).

    Article  ADS  Google Scholar 

  62. J. B. Delos, Studies of the potential curve-crossing problem III collisional spectroscopy of close crossings, Phys. Rev. A9, 1626–1634 (1974).

    Google Scholar 

  63. M. B. Faist and R. D. Levine, Collisional ionization and elastic scattering in alkali — halogen atom collisions, J. Chem. Phys., 64, 2953–2970 (1976).

    Article  ADS  Google Scholar 

  64. M. B. Faist and R. B. Bernstein, Computational study of elastic and electronically inelastic scattering of Br by ground state I atoms: role of potential curve crossing, J. Chem. Phys., 64, 2971–2984 (1976).

    Article  ADS  Google Scholar 

  65. C. H. Becker, P. Casavecchia, Y. T. Lee, R. E. Olson and W. A. Lester Jr., Coupled channel study of halogen (2P) and rare gas (1S) scattering, J. Chem. Phys., 70, 5477–5488 (1979).

    Article  ADS  Google Scholar 

  66. R. H. G. Reid and A. Dalgarno, Fine structure transitions and shape resonances, Phys. Rev. Lett., 22, 1029–1034 (1969).

    Article  ADS  Google Scholar 

  67. R. H. G. Reid, Transitions among the 3p2P states of sodium induced by collisions with helium, J. Phys. B6, 2018–2039 (1973).

    ADS  Google Scholar 

  68. R. Dliren, The interpretation of experimental scattering cross-sections with pseudopotential calculations for the alkali — mercury interaction, J. Phys. B10, 3467–3481 (1977).

    ADS  Google Scholar 

  69. R. Dliren and H. O. Hoppe, Measurement and evaluation of differential scattering cross-sections for Na 2P(3/2 with Hg, J. Phys. B11, 2143–2167 (1978).

    ADS  Google Scholar 

  70. D. R. Bates and R. McCarroll, Electron capture in slow collisions, Proc. Roy. Soc.A 245, 175–183 (1958).

    Article  ADS  MATH  Google Scholar 

  71. S. B. Schneiderman and A. Russek, Velocity dependent orbitals in proton-on-Hydrogen-Atom Collisions, Phys. Rev. 181, 311–320 (1969).

    Article  Google Scholar 

  72. V. Aquilanti and G. Grossi, Angular momentum coupling schemes in the quantum mechanical treatment of P-state atom collisons, J. Chem. Phys., 731165–1172 (1980).

    Article  ADS  Google Scholar 

  73. V. Aquilanti, P. Casavecchia, G. Grossi and A. Lagana, Decoupling approximations in the quantum mechanical treatment of P-state atom collisions, J. Chem. Phys., 73, 1173–1180 (1980).

    Article  ADS  Google Scholar 

  74. R. Langer, On the asymptotic solutions of ordinary differential equations, with an application to Bessel functions of large order, Trans. Am. Math. Soc., 33, 23–64 (1931).

    Article  Google Scholar 

  75. S. C. Miller and R. H. Good, A WKB-type approximation to the Schrodinger equation, Phys. Rev., 91, 174–179 (1953).

    Article  MathSciNet  MATH  Google Scholar 

  76. M. S. Child in Molecular Spectroscopy II ed. R. F. Barrow, D. A. Long and D. J. Millen, ( Chemical Society Specialist Periodical Report ) 1974.

    Google Scholar 

  77. M. S. Child (ed.) Semiclassical methods in molecular scattering and spectroscopy, D. Reidel, Dortrecht (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Child, M.S. (1982). Low Energy Atom-Atom Collisions. In: Gianturco, F.A. (eds) Atomic and Molecular Collision Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3312-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3312-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3314-2

  • Online ISBN: 978-1-4613-3312-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics