Skip to main content

Mitochondrial Transport Systems

  • Chapter
Mitochondria

Part of the book series: Cellular Organelles ((BLSC))

  • 318 Accesses

Abstract

The specialized role of mitochondria in intermediary metabolism requires that only certain substrates, cofactors, and metals be accessible to their interior compartments. Of the substrates that must be capable of entering the matrix space, the most important are O2, H2O, ADP, phosphate, pyruvate, and fatty acids. At the same time, products of mitochondrial oxidations and phosphorylation must have a means of exiting from the organelle. These include CO2 and ATP. Virtually all mitochondria, irrespective of their source, have been shown to be either freely permeable or to have specific transport systems that accommodate an efficient passage of these essential metabolites across the permeability barriers separating the matrix space from the surrounding cytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Readings

  • Amoore, R. E., and Bartley, W. (1958) The permeability of isolated rat liver mitochondria to sucrose, sodium chloride and potassium chloride at 0°, Biochem. J. 69: 223.

    PubMed  CAS  Google Scholar 

  • Brierley, G. P. (1974) Passive permeability and energy-linked ion movements in isolated heart mitochondria, Ann. N.Y. Acad. Sei. 227: 398.

    Article  CAS  Google Scholar 

  • Brierley, G. P. (1976) Monovalent cation transport by mitochondria, in Mitochondria: Bioenergetics, Biogenesis and Membrane Structure ( L. Packer and A. Gomez-Puyou, eds.), Academic Press, New York, pp. 3–20.

    Google Scholar 

  • Brunnengraber, H., and Lowenstein,J. M. (1973) Effect of hydroxycitrate on ethanol metabolism, FEBS Lett. 36: 130.

    Article  Google Scholar 

  • Chance, B. (1965) The energy-linked reaction of calcium with mitochondria, J. Biol. Chem. 240: 2729.

    PubMed  CAS  Google Scholar 

  • Chance, B., and Montai, M. (1971) Ion translocation in energy-conserving membrane systems, in Current Topics in Membranes and Transport (F. Bronner and A. Kleinzeller, eds.), Vol. 2, Academic Press, New York, pp. 99–156.

    Chapter  Google Scholar 

  • Chappell, J. B. (1968) Systems for the transport of substrates into mitochondria, Br. Med. Bull. 24: 150.

    PubMed  CAS  Google Scholar 

  • Chappell, J. B., and Crofts, A. R. (1966) Ion transport and reversible volume changes of isolated mitochondria, in Regulation of Metabolic Processes in Mitochondria ( J. M. Tager, S. Papa, E. Quagliarello and E. C. Slater, eds.) Elsevier, Amsterdam, pp. 293–316.

    Google Scholar 

  • Chappell, J. B., McGivan, J. D., and Crompton, M. (1972) The anion transporting systems of mitochondria and their biological significance, in The Molecular Basis of Biological Transport ( J. F. Woessner, Jr. and F. Huijing, eds.), Academic Press, New York, pp. 55–81.

    Google Scholar 

  • Fonyo, A. (1968) Phosphate carrier of rat liver mitochondria. Its role in phosphate outflow, Biochem. Biophys. Res. Commun. 32: 624.

    Article  PubMed  CAS  Google Scholar 

  • Gamble, J. G., and Lehninger, A. L. (1973) Transport of ornithine and citrulline across the mitochondrial membrane, J. Biol. Chem. 248: 610.

    PubMed  CAS  Google Scholar 

  • Grunnet, N. (1970) Oxidation of extramitochondrial NADH by rat liver mitochondria. Possible role of acetyl-SCoA elongation enzymes, Biochem. Biophys. Res. Commun. 41: 909.

    Article  PubMed  CAS  Google Scholar 

  • Heidt, H. W., Klingenberg, M., and Milovancev, M. (1972) Differences between the ATP/ADP ratios in the mitochondrial matrix and extramitochondrial space, Eur. J. Biochem. 30: 434.

    Article  Google Scholar 

  • Klingenberg, M. (1970) Metabolite transport in mitochondria. An example for intracellular membrane function, in Essays in Biochemistry (P. N. Campbell and F. Dickens, eds.), Vol. 6, Academic Press, New York, pp. 117–159.

    Google Scholar 

  • Klingenberg, M. (1976) The adenine nucleotide transport of mitochondria, in Mitochondria: Bioenergetics, Biogenesis and Membrane Structure ( L. Packer and A. Gomez-Puyou, eds.), Academic Press, New York, pp. 127–150.

    Google Scholar 

  • Lardy, H. A., Graven, S. N., and Estrada-O, S. (1967) Specific induction and inhibition of cation and anion transport in mitochondria, Fed. Proc. 26: 1355.

    PubMed  CAS  Google Scholar 

  • Lehninger, A. L. (1971) The transport systems of mitochondria membranes, in Biomembranes (L. A. Manson, ed.), Vol. 2., Academic Press, New York, pp. 147–164.

    Google Scholar 

  • Lehninger, A. L., Carafoli, E., and Rossi, C. S. (1967) Energy-linked ion movements in mitochondria, Adv. Enzymol. 29: 259.

    PubMed  CAS  Google Scholar 

  • Lehninger, A. L., Brand, M. D., and Reynafarje, B. (1975) Pathways and stoichiometry of H+ and Ca++ transport coupled to mitochondrial electron transport, in Electron Transfer Chains and Oxidative Phosphorylation ( E. Quagliariello, S. Papa, F. Palmieri, E. C. Slater and N. Siliprandi, eds.) North-Holland, Amsterdam, pp. 329–334.

    Google Scholar 

  • Meijer, A. J., and Van Dam, K. (1974) The metabolic significance of transport in mitochondria, Biochim. Biophys. Acta 346: 213.

    PubMed  CAS  Google Scholar 

  • Mitchell, P. (1970) Reversible coupling between transport and chemical reactions, in Membranes and Ion Transport (E. E. Bittar, ed.), Vol. 1, Wiley-Interscience, New York, pp. 192–256.

    Google Scholar 

  • Palmieri, F., Quagliariello, E., and Klingenberg, M. (1970) Quantitative correlation between the distribution of anions and the pH difference across the mitochondrial membrane, Eur. J. Biochem. 17: 230.

    Article  PubMed  CAS  Google Scholar 

  • Pressman, B. C. (1970) Energy-linked transport in mitochondria, in Membranes of Mitochondria and Chloropiasts ( E. Racker, ed.), Von Nostrand Reinhold, New York, pp. 213–250.

    Google Scholar 

  • Stein, W. D. (1967) The Movement of Molecules Across Cell Membranes, Academic Press, New York.

    Google Scholar 

  • Williamson, J. R. (1976) Mitochondrial metabolism and cell regulation, in Mitochondria: Bioener- getics, Biogenesis and Membrane Structure ( L. Packer and A. Gomez-Puyou, eds.), Academic Press, New York, pp. 79–108.

    Google Scholar 

  • Williamson, J. R., Anderson, J., and Browning, E. T. (1970) Inhibition of gluconeogenesis by butyl-malonate in perfused rat liver, J. Biol. Chem. 245: 1717.

    PubMed  CAS  Google Scholar 

  • Zebe, E., Delbrück, A., and Bücher, T. (1959) Uber den Glycerin-l-P Cyclus im Flugmuskel von Locusta migratoria, Biochem. Z. 331: 254.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Tzagoloff, A. (1982). Mitochondrial Transport Systems. In: Mitochondria. Cellular Organelles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3294-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3294-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3296-1

  • Online ISBN: 978-1-4613-3294-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics