Mitochondria pp 267-322 | Cite as

Mitochondrial Genetics

  • Alexander Tzagoloff
Part of the Cellular Organelles book series (BLSC)


A remarkable feature of mitochondria is their possession of an independent genetic system, now known to be necessary for the morphogenesis of a respiratory-competent organelle. This aspect of mitochondria has attracted the attention of geneticists and molecular biologists, and, as a result, much progress has been made in our understanding of this rather unique genetic system. The foundations of mitochondrial genetics were laid in the late 1940s by Ephrussi and his collaborators who discovered a mutation that abolished the capacity of yeast to grow on nonfermentable substrates such as ethanol or glycerol whose utilization depends on a functional respiratory chain. Even though such respiratory-deficient strains of yeast are capable of growing on glucose and other sugars, they form small colonies and for this reason are called “petite” mutants (Fig. 11.1). Ephrussi’s studies showed that mutations resulting in the petite phenotype are inherited in a non-Mendelian fashion, and he therefore postulated the lesions to be in an extrachromosomal or cytoplasmic element. This element was designated as the rho (ρ) factor, and hence, cytoplasmic petite mutants are also referred to as ρ mutants. Although this was not known at the time of the discovery, the ρ factor was subsequently shown to be identical to mitochondrial DNA.


Mitochondrial Genome Cytochrome Oxidase Diploid Cell Yeast Mitochondrion Haploid Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Readings

  1. Alwine, J. C., Kemp, D. J., and Stark, G. R. (1977) Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl paper and hybridization with DNA probes, Proc. Natl. Acad. Sci. U.S.A. 76: 731.Google Scholar
  2. Attardi, G., Cantatore, P., Ching, E., Crews, S., Gelfand, R., Merkel, C., Montoya, J., And Ojala, D. (1980) The remarkable features of gene organization and expression of human mitochondrial DNA, in The Organization and Expression of the Mitochondrial Genome ( A. M. Kroon and C. Saccone, eds.), North-Holland, Amsterdam, pp. 103–119.Google Scholar
  3. Barrell, B. G., Bankier, A. T., and Drouin, J. (1979) A different genetic code in human mitochondria, Nature 282: 189.PubMedCrossRefGoogle Scholar
  4. Barrell, B. G., Anderson, S., Bankier, A. T., deBruijn, M. H. L., Chen, E., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D., Staden, R., and Young, I. G. (1980) Different pattern of codon recognition by mammalian mitochondrial tRNAs, Proc. Natl. Acad. Sci. U.S.A. 77: 3164.PubMedCrossRefGoogle Scholar
  5. Bernardi, G., Peperno, G., and Fonty, G. (1972) The mitochondrial genome of wild type yeast cells. I. Preparation and heterogeneity of mitochondrial DNA, J. Mol. Biol. 65: 173.PubMedCrossRefGoogle Scholar
  6. Bogorad, L. (1972) Evolution of organelles and eucaryotic genomes, Science 188: 891.CrossRefGoogle Scholar
  7. Bonitz, S. G., Coruzzi, G., Thalenfeld, B. E., Tzagoloff, A., and Macino, G. (1980) Assembly of the mitochondrial membrane system. Structure and nucleotide sequence of the gene coding for subunit 1 of yeast cytochrome oxidase, J. Biol. Chem. 255: 1 1927.Google Scholar
  8. Bonitz, S. G., Berlani, R., Coruzzi, G., Li, M., Macino, G., Nobrega, F. G., Nobrega, M. P., Thalenfeld, B., and Tzagoloff, A. (1980) Codon recognition rules in yeast mitochondria, Proc. Natl. Acad. Sci. U.S.A. 77: 3167.PubMedCrossRefGoogle Scholar
  9. Borst, P. (1972) Mitochondrial nucleic acids, Annu. Rev. Biochem. 41: 333.PubMedCrossRefGoogle Scholar
  10. Borst, P., and Grivell, L. A. (1978) The mitochondrial genome of yeast, Cell 15: 705.PubMedCrossRefGoogle Scholar
  11. Cabral, F., and Schatz, G. (1978) Identification of the structural gene for yeast cytochrome oxidase subunit II on mitochondrial DNA, J. Biol. Chem. 253: 297.PubMedGoogle Scholar
  12. Casey, J., Cohen, M., Rabinowitz, M., Fukuhara, H., and Getz, G. S. (1972) Hybridization of mitochondrial transfer RNA’s with mitochondrial and nuclear DNA of Grande (wild type) yeast, J. Mol. Biol. 63: 431.PubMedCrossRefGoogle Scholar
  13. Claisse, M. L., Spyridakis, A., Wambier-Kluppel, M. L., Pajot, P., and Slonimski, P. P. (1978) Mosaic organization and expression of the mitochondrial DNA region controlling cytochrome b reductase and oxidase. Analysis of proteins translated from the box region, in Biochemistry and Genetics of Yeast ( M. Bacila, B. L. Horecker and A. O. M. Stoppani, eds.), Academic Press, New York, pp. 369 - 390.Google Scholar
  14. Coen, D., Deutsch, J., Netter, P., Petrochilo, E., and Slonimski, P. P. (1970) Mitochondrial genetics. I. Methodology and phenomenology, Symp. Soc. Exp. Biol. 24: 449.PubMedGoogle Scholar
  15. Dawid, I. B. (1972) Mitochondrial RNA in Xenopus laevis. The expression of the mitochondrial genome, J. Mol. Biol. 63: 201.PubMedCrossRefGoogle Scholar
  16. Dujon, B. (1980) Nucleotide sequences of the intron and flanking exons of the mitochondrial 21S rRNA gene of yeast strains with different alleles at the omega and ribl genetic loci, Cell 20: 185.PubMedCrossRefGoogle Scholar
  17. Dujon, B., Slonimski, P. P., and Weill, L. (1974) Mitochondrial genetics IX. A model for recombination and segregation of mitochondrial genomes in Saccharomyces cerevisiae, Genetics 78: 415.Google Scholar
  18. Dujon, B., Colson, A. M., and Slonimski, P. P. (1978) The mitochondrial genetic map of Saccharo- myces cerevisiae: Compilation of mutations, genes, genetic and physical maps, in Mitochondria 1977: Genetics and Biogenesis of Mitochondria ( W. Bandlow, R. J. Schweyen, K. Wolf and F. Kaudewitz, eds.), Walter de Gruyter, Berlin, pp. 579 - 669.Google Scholar
  19. Ephrussi, B., Hottinguer, H., and Chimenes, A. M. (1949) Action de l’acriflavine sur les levures. I.La mutation “petite” colonie, Ann. Inst. Pasteur 76: 351.Google Scholar
  20. Fox, T. D. (1979) Five TGA “stop” codons occur within the translated sequence of the yeast mitochondrial gene for cytochrome c oxidase subunit II, Proc. Natl. Acad. Sci. U.S.A. 76: 6534.PubMedCrossRefGoogle Scholar
  21. Gillham, N. W. (1974) Genetic analysis of chloroplast and mitochondrial genomes, Annu. Rev. Genet. 8: 347.PubMedCrossRefGoogle Scholar
  22. Gillham, N. W. (1978) Organelle Heredity, Raven Press, New York.Google Scholar
  23. Goldring, E. S. L., Grossman, L. J., Drupnick, D., Cryer, D. R., and Marmur, J. (1970) The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide, J. Mol. Biol. 52: 323.PubMedCrossRefGoogle Scholar
  24. Heckman, J. E., Hecker, L. I., Schwartzbach, S. D., Barnett, W. E., Baumstark, B., and RajBhandary, U. L. (1978) Structure and function of initiator methionine tRNA from the mitochondria of Neurospora crassa, Cell 13: 83.Google Scholar
  25. Heckman, J. E., Samoff, J., Alzner-Deweerd, B., Yin, S., and RajBhandary, U. L. (1980) Novel features in the genetic code and codon reading patterns in Neuropora crassa mitochondria based on sequences of six mitochondrial tRNAs, Proc. Natl. Acad. Sci. U.S.A. 77: 3159.PubMedCrossRefGoogle Scholar
  26. Hollenberg, C. P., Borst, P., and Van Brüggen, E. F. J. (1970) Mitochondrial DNA. V. A 25-n closed circular duplex DNA molecule in wild-type yeast mitochondria. Structure and genetic complexity, Biochim. Biophys. Acta 209: 1.PubMedGoogle Scholar
  27. Lazowska, J., Jacq, C., and Slonimski, P. P. (1980) Sequence of introns and flanking exons in wild type and box 3 mutants of cytochrome b reveals an interlaced splicing protein coded by an intron, Cell 22: 333.PubMedCrossRefGoogle Scholar
  28. Li, M., and Tzagoloff, A. (1979) Assembly of the mitochondrial membrane system. Sequences of yeast mitochondrial valine and an unusual threonine tRNA gene, Cell 18: 47.PubMedCrossRefGoogle Scholar
  29. Lynch, D. C., and Attardi, G. (1976) Amino acid specificity of the transfer RNA species coded for by HeLa cell mitochondrial DNA, J. Mol. Biol. 102: 125.PubMedCrossRefGoogle Scholar
  30. Macino, G., and Tzagoloff, A. (1979) Assembly of the mitochondrial membrane system. Two separate genes coding for threonyl-tRNA in the mitochondrial DNA of Saccharomyces cerevisiae, Mol. Gen. Genet. 169: 183.CrossRefGoogle Scholar
  31. Macino, G., and Tzagoloff, A. (1981) Assembly of the mitochondrial membrane system. Sequence analysis of a yeast mitochondrial ATPase gene containing the oli2 and oli4 loci, Cell 20: 507.CrossRefGoogle Scholar
  32. Macino, G., Coruzzi, G., Nobrega, F. G., Li, M., and Tzagoloff, A. (1979) Use of the UGA terminator as a tryptophan codon in yeast mitochondria, Proc. Natl. Acad. Sci. U.S.A. 76: 3784.PubMedCrossRefGoogle Scholar
  33. Mahler, H. R., Hanson, D., Miller, D., Bilinski, T., Ellis, D. M., Alexander, N. J., and Perlman, P. S. (1977) Structural and regulatory mutations affecting mitochondrial gene products, in Mitochondria 1977: Genetics and Biogenesis of Mitochondria ( W. Bandlow, R. H. Schweyen, K. Wolf and F. Kaudewitz, eds.), Walter de Gruyter, Berlin, pp. 345–370.Google Scholar
  34. Margulis, L. (1970) Origin of Eukaryotic Cell, Yale University Press, New Haven.Google Scholar
  35. Maxam, A. M., and Gilbert, W. (1977) A new method for sequencing DNA, Proc. Natl. Acad. Sci. U.S.A. 74: 560.PubMedCrossRefGoogle Scholar
  36. Morimoto, R., and Rabinowitz, M. (1979) Physical mapping of the yeast mitochondrial genome. Derivation of the fine structure and gene map of strain D273-10B and comparison with a strain MH41-7B differing in genome size, Mol. Gen. Genet 170: 25.PubMedGoogle Scholar
  37. Morimoto, R., Merten, S., Lewin, A., Martin, N. C., and Rabinowitz, M. (1978) Physical mapping of genes on yeast mitochondrial DNA. Localization of antibiotic resistance loci, and rRNA and tRNA genes, Mol. Gen. Genet. 163: 241.Google Scholar
  38. Nagley, P., Sriprakash, K. S., Rytka, J., Choo, K. B., Trembath, M. K., Lukins, H. B., and Linnane, A. W. (1976) Physical mapping of genetic markers in the yeast mitochondrial genome, in The Genetic Function of Mitochondrial DNA ( C. Saccone and A. M. Kroon, eds.), North-Holland, Amsterdam, pp. 231–242.Google Scholar
  39. Nass, M. M. K. (1969) Mitochondrial DNA. II. Structure and physiochemical properties of isolated DNA, f. Mol. Biol. 42: 529.CrossRefGoogle Scholar
  40. Nass, M. M. K., Nass, S., and Afzelius, B. A. (1965) The general occurrence of mitochondrial DNA, Exp. Cell Res. 37: 190.CrossRefGoogle Scholar
  41. Nobrega, F. G., and Tzagoloff, A. (1980) Assembly of the mitochondrial membrane system. DNA sequence and organization of the cytochrome b gene in Saccharomyces cerevisiae D273-10B, J. Biol. Chem. 255: 9828.PubMedGoogle Scholar
  42. Prunell, A., and Bernardi, G. (1977) The mitochondrial genome of wild type yeast cells. VI. Genome organization, J. Mol. Biol. 110: 53.PubMedCrossRefGoogle Scholar
  43. Sager, R. (1972) Cytoplasmic Genes and Organelles, Academic Press, New York.Google Scholar
  44. Schatz, G., and Mason, T. L. (1974) The biosynthesis of mitochondrial proteins, Annu. Rev. Biochem. 43: 51.CrossRefGoogle Scholar
  45. Schatz, G., Halsbrunner, E., and Tuppy, H. (1964) Deoxyribonucleic acid associated with yeast mitochondria, Biochem. Biophys. Res. Commun. 15: 127.CrossRefGoogle Scholar
  46. Schweyen, R. J., Weiss-Brummer, B., Backhaus, B., and Kaudewitz, F. (1978) The genetic map of the mitochondrial genome in yeast. Map positions of drugr and mit− markers as revealed from population analysis of p clones in Saccharomyces cerevisiae, Mol. Gen. Genet. 159: 151.PubMedCrossRefGoogle Scholar
  47. Sebald, W., Wächter, E., and Tzagoloff, A. (1979) Identification of amino acid substitutions in the DCCD-binding subunit of the mitochondrial ATPase complex from oligomycin-resistant mutants of S. cerevisiae, Eur. J. Biochem. 100: 599.PubMedCrossRefGoogle Scholar
  48. Slonimski, P. P. (1953) Formation des Enzymes Respiratoire chez la Levure, Masson, Paris.Google Scholar
  49. Slonimski, P. P., and Tzagoloff, A. (1976) Localization in yeast mitochondrial DNA of mutations expressed in a deficiency of cytochrome oxidase and/or coenzyme QH2-cytochrome c reductase, Eur. J. Biochem. 61: 27.PubMedCrossRefGoogle Scholar
  50. Strausberg, R. L., Vincent, R. D., Perlman, P. S., and Butow, R. A. (1978) Asymmetric gene conversion at inserted segments on yeast mitochondrial DNA, Nature 276: 577.PubMedCrossRefGoogle Scholar
  51. Thalenfeld, B. E., and Tzagoloff, A. (1980) Assembly of the mitochondrial membrane system. Sequence of the oxi2 gene of yeast mitochondrial DNA, J. Biol. Chem. 255: 6173.PubMedGoogle Scholar
  52. Tzagoloff, A., Akai, A., Needleman, R. B., and Zulch, G. (1975) Assembly of the mitochondrial membrane system. Cytoplasmic mutants of S. cerevisiae with lesions in enzymes of the respiratory chain and in the mitochondrial ATPase, J. Biol. Chem. 250: 8236.PubMedGoogle Scholar
  53. Van Ommen, G. J. B., Groot, G. S. P., and Grivell, L. A. (1979) Transcription maps of mtDNAs of two strains of Saccharomyces: Transcription of strain specific insertions; complex RNA maturation and splicing, Cell 18: 511.PubMedCrossRefGoogle Scholar
  54. Wesolowski, M., and Fukuhara, H. (1979) The genetic map of transfer RNA genes of yeast mitochondria. Correction and extension, Mo I. Gen. Genet. 170: 261.Google Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Alexander Tzagoloff
    • 1
  1. 1.Columbia UniversityNew YorkUSA

Personalised recommendations