Generalized Monogenic Functions Satisfying Differential Equations with Anti-Monogenic Right-Hand Sides

  • W. Tutschke
  • U. Yüksel
Part of the International Society for Analysis, Applications and Computation book series (ISAA, volume 6)

Abstract

A generalized monogenic function is a Clifford-algebra-valued solution u = u(x) of an equation of type Du = F(x,u) where D is the Cauchy-Riemann operator in n+1 and F(x,u) is linear in the components of u. The paper proves a sufficient condition under which the right-hand side is antimonogenic. This criterion makes it possible to construct anti-monogenic righthand sides.

Keywords

Lution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bers, L.: Theory of pseudo-analytic functions. (Courant Institute), New York, 1953.MATHGoogle Scholar
  2. [2]
    Goldschmidt, B.: Verallgemeinerte analytische Vektoren im n. Thesis (Dissertation B), Martin Luther University, Halle, 1980.Google Scholar
  3. [3]
    Goldschmidt, B.: Existence and representation of solutions of a class of elliptic systems of partial differential equations of first order in the space. Math. Nachr. 108 (1982), 159–166.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    Goldschmidt, B.: A Gauchy integral formula for a class of elliptic systems of partial differential equations of first order in the space. Math. Nachr. 108 (1982), 167–178.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    Brackx, F., Delanghe, R., Sommen,.F.: Clifford analysis. Pitman, London, 1982.MATHGoogle Scholar
  6. [6]
    Obolashvili, E.: Partial differential equations in Clifford analysis. Addison Wesley Longman, Harlow, 1998.MATHGoogle Scholar
  7. [7]
    Tutschke, W., Yüksel, U.: Interior L p-estimates for functions with integral representations, (submitted to Applicable Analysis).Google Scholar
  8. [8]
    Vekua, I.N.: Generalized analytic functions. Pergamon Press, Oxford, 1962.MATHGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • W. Tutschke
    • 1
  • U. Yüksel
    • 1
  1. 1.Department of MathematicsTechnical University GrazGrazAustria

Personalised recommendations