Skip to main content

Capturing the Connectivity of High-Dimensional Geometric Spaces by Parallelizable Random Sampling Techniques

  • Chapter
Advances in Randomized Parallel Computing

Part of the book series: Combinatorial Optimization ((COOP,volume 5))

Abstract

Applications such as robot programming, design for manufacturing, animation of digital actors, rationale drug design, and surgical planning, require computing paths in high-dimensional geometric spaces, a provably hard problem. Recently, a general path-planning approach based on a parallelizable random sampling scheme has emerged as an effective approach to solve this problem. In this approach, the path planner captures the connectivity of a space F by building a probabilistic roadmap, a network of simple paths connecting points picked at random in F. This paper combines results previously presented in separate papers. It describes a basic probabilistic roadmap planner that is easily parallelizable, and it analyzes the performance of this planner as a function of how well F satisfies geometric properties called -goodness, expansiveness, and path clearance. While -goodness allows us to study how well a probabilistic roadmap covers F, expansiveness and path clearance allow us to compare the connectivity of the roadmap to that of F.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Akl. Parallel Computation: Models and Methods, Prentice Hall, Englewood Cliffs, NJ, 1997.

    Google Scholar 

  2. N. Amato, O.B. Bayazit, L.K. Dale, C. Jones, and D. Vallejo. OBPRM: An Obstacle–Based PRM for 3D Workspaces. Proc. Workshop on Algorithmic Foundations of Robotics (WAFR), Houston, TX, March 1998.

    Google Scholar 

  3. N. Amato, and Y. Wu. A Randomized Roadmap Method for Path and Manipulation Planning. Proc. IEEE Int. Conf. on Robotics and Automation, Minneapolis, MN, pp. 113–120, 1996

    Google Scholar 

  4. J. Barraquand, L.E. Kavraki, J.C. Latombe, T.Y. Li, R. Motwani, and P. Raghavan. A Random Sampling Scheme for Path Planning. Int. J. of Robotics Research, 16 (6): 759–774, 1997.

    Article  Google Scholar 

  5. J. Barraquand and J.C. Latombe. Robot Motion Planning: A Distributed Representation Approach. Int. J. of Robotics Research, 10 (6): 628–649, 1991.

    Article  Google Scholar 

  6. J.F. Canny. The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA, 1988.

    Google Scholar 

  7. H, Chang and T.Y. Li. Assembly Maintainability Study with Motion Planning, Proc. IEEE Int. Conf. on Robotics and Automation, Nagoya. pp. 1012–1019, 1995.

    Google Scholar 

  8. D.P. Dobkin, J. Hershberger, D.G. Kirkpatrick, and S. Suri. Computing the Intersection Depth of Polyhedra. Algorithmica, 9: 518–533, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  9. E.G. Gilbert, D.W. Johhson, and S.S. Keerthi. A Fast Procedure for Computing the Distance Between Complex Robots in Three-Dimensional Space. IEEE Tr. on Robotics and Automation, 4: 193–203, 1988.

    Article  Google Scholar 

  10. J.E. Hopcroft, J.T. Schwartz, and M. Sharir. On the Complexity of Motion Planning for Multiple Independent Objects: PSPACE-Hardness of the ‘Warehouseman’s Problem’. Int. J. of Robotics Research, 3 (l): 76–88, 1984.

    Article  Google Scholar 

  11. J.E. Hopcroft and G.T. Wilfong. Reducing Multiple Object Motion Planning to Graph Searching. SIAM J. on Computing, 15 (3): 768–785, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  12. T. Horsch, F. Schwarz, and H. Tolle. Motion Planning for Many Degrees of Freedom–Random Reflections at C–Space Obstacles. Proc. IEEE Int. Conf. on Robotics and Automation, San Diego, CA April 1994, pp. 3318–3323.

    Google Scholar 

  13. D. Hsu, L.E. Kavraki, J.C. Latombe, R. Motwani, and S. Sorkin. On Finding Narrow Passages with Probabilistic Roadmap Planners. Proc. Workshop on Algorithmic Foundations of Robotics (WAFR), Houston, TX, March 1998.

    Google Scholar 

  14. D. Hsu, J.C. Latombe, and R. Motwani. Path Planning in Expansive Configuration Spaces. Proc. IEEE Int. Conf. on Robotics and Automation, Albuquerque, NM, 1997, pp. 2719–2726. An extended version of this paper will appear in Int. J. of Computational Geometry and Applications.

    Google Scholar 

  15. P. Jiménez, F. Thomas, and C. Torras. Collision Detection Algorithms for Motion Planning. Robot Motion Planning and Control, J.P. Laumond (ed.), Lecture Notes in Control and Information Sciences, 229, Springer, New York, NY, 1998, pp. 305–343.

    Google Scholar 

  16. D.A. Joseph and W.H. Plantiga. On the Complexity of Reachability and Motion Planning Questions. Proc. 1st ACM Symp. on Computational Geometry, pp. 62–66, 1985.

    Google Scholar 

  17. L. Kavraki. Random Networks in Configuration Space for Fast Path Planning. Ph.D. Thesis, Rep. No. STAN-CS-TR-95-1535, Department of Computer Science, Stanford Univ., Stanford, CA, 1995.

    Google Scholar 

  18. L. Kavraki, M. Kolountzakis, and J.C. Latombe. Analysis of Probabilistic Roadmaps for Path Planning. Proc. IEEE Int. Conf. on Rob. and Aut., Minneapolis, MN, pp. 3020–3025, 1996.

    Google Scholar 

  19. L. Kavraki, J.C. Latombe, R. Motwani, and P. Raghavan. Randomized Query Processing in Robot Motion Planning. Proc. ACM SIGACT Symposium on the Theory of Computing (STOC), Las Vegas, Nevada, 1995, pp. 353–362.

    Google Scholar 

  20. L. Kavraki, P. Svestka, J.C. Latombe, and M. Overmars Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces. IEEE Transactions on Robotics and Automation, 12(4): 566–580, August 1996.

    Google Scholar 

  21. Y. Koga, K. Kondo, J. Kuffner, and J.C. Latombe. Planning Motions with Intentions. Proc. of SIGGRAPH’94, ACM, pp. 395–408, 1994.

    Google Scholar 

  22. M. Lin and J.F. Canny. A Fast Algorithm for Incremental Distance Computation. Proc. of the IEEE Int. Conf. on Robotics and Automation, Sacramento, CA, 1994, pp. 602–608.

    Google Scholar 

  23. M. Lin, D. Manocha, J. Cohen, and S. Gottschalk. Collision detection: Algorithms and applications. Algorithmic Foundations of Robotics, Goldberg et al. (Eds), A K Peters, Ltd., 1995, pp. 129–141.

    Google Scholar 

  24. B. Mirtich. V-Clip: Fast and Robust Polyhedral Collision Detection. Tech. Rep. TR97-05, Mitsubishi El. Res. Lab., Cambridge, MA, 1997.

    Google Scholar 

  25. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, Cambridge, UK, 1995

    MATH  Google Scholar 

  26. C. J. Ong. On the Quantification of Penetration between General Objects. Int. J. of Robotics Research, 16 (3): 400–409, 1997.

    Article  Google Scholar 

  27. C.J. Ong and E.G. Gilbert. Growth Distances: New Measures for Object Separation and Penetration. IEEE Tr. on Robotics and Automation, 12 (6): 888–903, 1996.

    Article  Google Scholar 

  28. M. Overmars. A random Approach to Motion Planning. Technical Report, RUU–CS–92–32, Department of Computer Science, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands, 1992.

    Google Scholar 

  29. M. Overmars and P. Švestka. A Probabilistic Learning Approach to Motion Planning. Algorithmic Foundations of Robotics, K. Goldberg et al. (eds.), A.K. Peters, Wellesley, MA, 1995, pp. 19–37.

    Google Scholar 

  30. S. Quinlan. Efficient Distance Computation Between Non-Convex Objects. Proc. IEEE Int. Conf. on Robotics and Automation, San Diego, CA, pp. 3324–3330, 1994.

    Google Scholar 

  31. J. Reif. Complexity of the Mover’s Problem and Generalizations. Proc. IEEE Symp. on Foundations of Computer Science. IEEE, pp. 421– 427, 1979.

    Google Scholar 

  32. P. Švestka and M. Overmars. Probabilistic Path Planning. Robot Motion Planning and Control, J.P. Laumond (ed.), Lecture Notes in Control and Information Sciences, 229, Springer, New York, NY, 1998, pp. 255–304.

    Google Scholar 

  33. Schwartz, J.T. and Sharir, M. 1983. On the ‘Piano Movers’ Problem: II. General Techniques for Computing Topological Properties of Real Algebraic Manifolds. Advances in Applied Mathematics. 4: 298–351.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Hsu, D., Latombe, JC., Motwani, R., Kavraki, L.E. (1999). Capturing the Connectivity of High-Dimensional Geometric Spaces by Parallelizable Random Sampling Techniques. In: Pardalos, P.M., Rajasekaran, S. (eds) Advances in Randomized Parallel Computing. Combinatorial Optimization, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3282-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3282-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3284-8

  • Online ISBN: 978-1-4613-3282-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics