Skip to main content

Parallel Randomized Techniques for Some Fundamental Geometric Problems

  • Chapter
  • 219 Accesses

Part of the book series: Combinatorial Optimization ((COOP,volume 5))

Abstract

Computational Geometry is the field of computer science that is concerned with algorithmic techniques for solving geometric problems. Geometric problems arise in innumerable applications, particularly in the fields of Computer Graphics, Computer-Aided Design and Manufacturing (CAD/CAM), Robotics and Geographic Information Systems (GIS). A typical example of a fundamental problem in computational geometry is the computation of the convex hull of a set of points in d-dimensional space. The convex hull of a set of points is the smallest convex set containing those points. (Informally stated, a convex set is such that for any two points in the set, the line connecting those two points is also contained in the set.)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Aggarwal, B. Chazelle, L. Guibas, C. Ó’Dunlaing, and C. K. Yap. Parallel Computational Geometry. Algorithmica, 3: 293–327, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Alon, J. H. Spencer, and P. Erdös. The Probabilistic Method. Wiley-Interscience, New York, 1992.

    MATH  Google Scholar 

  3. N. Amato, M. Goodrich, and E. Ramos. Parallel Algorithms for Higher-Dimensional Convex Hulls. In Proc. of the 35th Annual IEEE Symp. on Foundations of Computer Science, pages 683–694, October 1994.

    Google Scholar 

  4. N. M. Amato and F. P. Preparata. An NC1 Parallel 3D Convex Hull Algorithm. In Proc. 9th ACM Symp. on Computational Geometry, 1993.

    Google Scholar 

  5. M. J. Atallah, R. Cole, and M. T. Goodrich. Cascading Divide-and-Conquer: A Technique for Designing Parallel Algorithms. SIAM J. Cormput, 18 (3): 499–532, June 1989.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. J. Atallah and M. T. Goodrich. Deterministic parallel computational geometry. In J. H. Reif, editor, Synthesis of Parallel Algorithms, pages 497–536. Morgan Kaufmann Publishers Inc., 1993.

    Google Scholar 

  7. H. Brönnimann, B. Chazelle, and J. Matoušek. Product range spaces, sensitive sampling and derandomization. In Proc. 34th Annu. IEEE Symp. on Foundations of Computer Science, pages 400–409, 1993.

    Google Scholar 

  8. K. Q. Brown. Geometric transforms for fast geometric algorithms. PhD thesis, Carnegie-Mellon University, Pittsburgh, PA, 1980.

    Google Scholar 

  9. B. Chazelle. An optimal convex hull algorithm in any fixed dimension. Discrete Comput. Geom., 10: 377–409, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Chazelle and D. Dobkin. Intersection of convex objects m two and three dimensions. Journal of the ACM, 34(l):l–27, 1987.

    Google Scholar 

  11. H. Chernoff. A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the Sum of Observations. Annals of Math. Stat., 2: 493–509, 1952.

    Article  MathSciNet  Google Scholar 

  12. A. Chow. Parallel Algorithms for Geometric Problems. PhD thesis, University of Illinois at Urbana-Champaign, 1980.

    Google Scholar 

  13. K. Clarkson. New applications of random sampling in computational geometry. Discrete Comput. Geom., 2: 195–222, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. L. Clarkson and P. W. Shor. Applications of Random Sampling in Computational Geometry, II. Discrete Comput. Geom., 4: 387–421, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Cole and M. T. Goodrich. Optimal Parallel Algorithms for Polygon and Point-set Problems. Algorithmica, 7: 3–23, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. A. Cook, C. Dwork, and R. Reischuk. Upper and lower time bounds for parallel random access machines without simultaneous writes. SIAM J. Comput, 15: 87–97, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, NY, 1987.

    MATH  Google Scholar 

  18. W. Feller. An Introduction to Probability Theory and Its Applications, volume 1. John Wiley, New York, NY, 1968.

    MATH  Google Scholar 

  19. S. Fortune. A Sweepline Algorithm for Voronoi Diagrams. In Proc. 2nd ACM Symp. on Computational Geometry, pages 313–322, 1986.

    Google Scholar 

  20. M. T. Goodrich. Geometric Partitioning Made Easier, Even in Parallel. In Proc. 9th ACM Symp. on Computational Geometry, 1993.

    Google Scholar 

  21. M. T. Goodrich, C. Ó’Dunlaing, and C. K. Yap. Constructing the Voronoi Diagram of a Set of Line Segments in Parallel. In Lecture Notes in Computer Science: 382, Algorithms and Data Structures, WADS, pages 12–23. Springer-Verlag, 1989.

    Google Scholar 

  22. T. Hagerup and C. Rub. A guided tour of chernoff bounds. Info. Proc. Lett., 33 (10): 305–308, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Haussler and E. Welzl. e-nets and Simplex Range Queries. Discrete Comput. Geom., 2: 127–152, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. G. Kirkpatrick. Efficient Computation of Continuous Skeletons. In Proc. 20th IEEE Symp. on Foundations of Computer Science, pages 18– 27, 1979.

    Google Scholar 

  25. D. T. Lee and R. L. Drysdale. Generalization of Voronoi Diagrams in the Plane. SIAM J. Comput., 10 (l): 73–87, February 1981.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Levcopoulos, J. Katajainen, and A. Lingas. An Optimal Expected-time Parallel Algorithm for Voronoi Diagrams. In Proc. of the First Scandinavian Workshop on Algorithm Theory, volume 318 of Lecture Notes in Computer Science, pages 190–198. Springer-Verlag, 1988.

    Google Scholar 

  27. J. Matoušek. Cutting hyperplane arrangements. Discrete Comput. Geom., 6: 385–406, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. Matoušek. Reporting points in halfspaces. Comput. Geom, Theory Appl, 2 (3): 163–186, 1992.

    Google Scholar 

  29. J. S. B Mitchell. On Maximum Flows in Polyhedral Domains. In Proceedings of the 4th Annual ACM Symposium on Computational Geometry, pages 341–351, 1988.

    Chapter  Google Scholar 

  30. K. Mulmuley. A Fast Planar Partition Algorithm. In Proc. 20th IEEE Symp. on the Foundations of Computer Science, pages 580–589, 1988.

    Google Scholar 

  31. C. Ó’Dunlaing and C. K. Yap. A ‘Retraction’ Method for Planning the Motion of a Disc. J. Algorithms, 6: 104–111, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  32. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag New York Inc., 1985.

    Google Scholar 

  33. M. O. Rabin. Probabilistic Algorithms. In J. Traub, editor, Algorithms and Complexity, New Directions and Recent Results, pages 21–36. Academic Press, 1976.

    Google Scholar 

  34. S. Rajasekaran and S. Ramaswami. Optimal parallel randomized algorithms for the voronoi diagram of line segments in the plane and related problems. In Proc. of the 10th Annual ACM Symp. on Computational Geometry, pages 57–66, Stony Brook, New York, June 1994. Full paper submitted to Algorithmica.

    Google Scholar 

  35. S. Rajasekaran and S. Sen. Random Sampling Techniques and Parallel Algorithm Design. In J. H. Reif, editor, Synthesis of Parallel Algorithms, pages 411–451. Morgan Kaufmann Publishers, Inc., 1993.

    Google Scholar 

  36. E. Ramos. Construction of 1-d lower envelopes and applications. In Proc. of the 13th Annual ACM Symp. on Computational Geometry, pages 57–66, Nice, France, June 1997.

    Google Scholar 

  37. J. H. Reif and S. Sen. Optimal Parallel Randomized Algorithms for Three Dimensional Convex Hulls and Related Problems. SIAM J. Comput., 21 (3): 466–485, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. H. Reif and S. Sen. Optimal Randomized Parallel Algorithms for Computational Geometry. Algorithmica, 7: 91–117, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  39. R. Seidel. A convex hull algorithm optimal for point sets in even dimensions. Master’s thesis, Dept. Computer Sci., Univ. British Columbia, Vancouver, BC, 1981.

    Google Scholar 

  40. R. Seidel. Constructing higher-dimensional convex hulls at logarithmic cost per face. In Proc. 18th Annu. ACM Symp. on the Theory of Computing, pages 404–413, 1986.

    Google Scholar 

  41. R. Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete Comput. Geom., 6: 423–434, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  42. R. Solovay and V. Strassen. A Fast Monte-Carlo Test for Primality. SIAM J. Computing, 6 (l): 84–85, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  43. C. K. Yap. An O(n log n) Algorithm for the Voronoi Diagram of a Set of Simple Curve Segments. Discrete Comput. Geom., 2: 365–393, 1987.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Ramaswami, S. (1999). Parallel Randomized Techniques for Some Fundamental Geometric Problems. In: Pardalos, P.M., Rajasekaran, S. (eds) Advances in Randomized Parallel Computing. Combinatorial Optimization, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3282-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3282-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3284-8

  • Online ISBN: 978-1-4613-3282-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics