Skip to main content

Part of the book series: Applied Optimization ((APOP,volume 24))

Abstract

Decision problems—arising in various scientific, engineering and economic contexts—are frequently modeled by optimizing the value of suitable objective function under stated feasibility constraints. Global optimization (GO) is aimed at finding the best solution of such decision models, in the possible presence of multiple locally optimal solutions.

This paper discusses a modelling environment for continuous global optimization. The program system LGO serves to analyse and solve nonlinear optimization models under very general—continuity or Lipschitz—structural assumptions. Hence, it is particularly suitable to handle GO problems related to complete stand-alone (‘black box’) system models, and to other models supported only by limited (or difficult to use) analytical information.

LGO integrates several robust and efficient, derivative-free, global and local scope solver modules: these can be applied in automatic or interactive operational modes. The system also has model visualization capabilities. LGO can be directly embedded under a menu-driven user interface, to assist the application development process on personal computers. It is also available for workstation platforms, and can be linked to a variety of advanced numerical modeling and visualization environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Birge, J.R. and Murty, K.G. eds. (1994) Mathematical ProgrammingL State of the Art, University of Michigan Press, Ann Arbor, MI.

    Google Scholar 

  2. Boon, J.G., Pintér, J., and Somlyódy, L. (1989) A new stochastic approach for controlling point source river pollution. International Association for Hydrologic Sciences (IAHS) Publication 180, 241–249.

    Google Scholar 

  3. Cooke, R. and Pintér, J. (1989) Optimization in risk management. Civil Engineering Systems 6, 122–128.

    Article  Google Scholar 

  4. Dallwig, S., Neumaier, A. and Schichl, H. (1997) GLOPT — A program for constrained global optimization. In: Bomze, I.M., Csendes, T., Horst, R. and Pardalos, P.M., eds. Developments in Global Optimizationl; pp. 19–36. Kluwer Academic Publishers, Dordrecht Boston London.

    Google Scholar 

  5. Fels, M., Pintér, J.D., and Lycon, D.S. (1997) Optimized design of wastewater treatment systems: Application to the mechanical pulp and paper industry. The Canadian Journal of Chemical Engineering 75, 437–451.

    Article  Google Scholar 

  6. Finley, R.J., Pintér, J.D., and Satish, M.G. (1997) Automatic model calibration applying global optimization techniques. Environmental Modeling and Assesment (to appear).

    Google Scholar 

  7. Fourer, R., Gay, D.M., and Kernighan, B.W. (1993) AMPL — A modellingLanguage for Mathematical Programming. The Scientific Press, San Francisco, CA. (Reprinted by Boyd and Fraser, Danvers, MA. 1996.)

    Google Scholar 

  8. Gassmann, H.I. and Pintér, J.D. (1997) Modelling tools for stochastic programs. Working Paper 97-1, School of Business Administration, Dalhousie University, Halifax, N.S.

    Google Scholar 

  9. Gay, D.M. (1997) Hooking your solver to AMPL. Working Paper, Bell Laboratories, Lucent Technologies, Murray Hill, NJ.

    Google Scholar 

  10. Hansen, P. and Jaumard, B. (1995) Lipschitz optimization. In: Horst, R. and Pardalos, P.M., eds. (1995); pp. 407–493.

    Google Scholar 

  11. Hendrix, E.M.T. and Pintér, J. (1991) An application of Lipschitzian global optimization to product design. Journal of Global Optimization 1, 389–401.

    Article  MATH  Google Scholar 

  12. Horst, R. and Pardalos, P.M., eds. (1995) Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht Boston London.

    MATH  Google Scholar 

  13. Lahey Computer System (1997) Fortran 90 — User’s guide. Lahey Computer Systems, Inc. Incline Village, NV.

    Google Scholar 

  14. Liebling, T.M. and de Werra, D., eds. (1997) Lectures on Mathematical Programming ISMP97. Elsevier, Amsterdam.

    Google Scholar 

  15. Neumaier, A. (1997) NOP — A compact input format for nonlinear optimization problems. In: Bomze, I.M., Csendes, T., Horst, R. and Pardalos, P.M., eds. Developments in global Optimization; pp. 1 — 18. Kluwer Academic Publishers, Dordrecht Boston London.

    Google Scholar 

  16. Pintér, J. (1987) A conceptual optimization framework for regional acidification control. Systems Analysis, Modelling and Simulation 4, 213–226.

    MATH  Google Scholar 

  17. Pintér, J. and Somlyódy, L. (1987) Optimization of regional water quality monitoring strategies. Water Science and Technology 19, 721–727.

    Google Scholar 

  18. Pintér, J. (1990a) Solving nonlinear equations via global partition and search: Some experimental results. Computing 43, 309–323.

    Article  MathSciNet  MATH  Google Scholar 

  19. Pintér, J. (1990b) Globally optimized calibration of environmental models. Annals of Operations Research 25, 211–222.

    Article  MathSciNet  MATH  Google Scholar 

  20. Pintér, J., Benedek, P. and Darázs, A. (1990) Risk management of accidental water pollution: An illustrative application. Water Science and Technology 22, 265–274.

    Google Scholar 

  21. Pintér, J. (1991) Stochastic modeling and optimization for environmental management. Annals of Operations Research 31, 527–544.

    Article  MathSciNet  MATH  Google Scholar 

  22. Pintér, J., and Pesti, G. (1991) Set partition by globally optimized cluster seed points. European Journal of Operational Research 51, 127–135.

    Article  MATH  Google Scholar 

  23. Pintér, J. (1992a) Convergence qualification of partition algorithms in global optimization. Mathematical Programing 56, 343–360.

    Article  MATH  Google Scholar 

  24. Pintér, J. (1992b) Lipschitzian global optimization: Some prospective applications. In: Floudas, C.A. and Pardalos, P.M., eds. Recent Advances in Global Optimization. Princeton Unviersity Press: pp. 399–432.

    Google Scholar 

  25. Pintér, J.D. (1995) LGO: An implementation of a Lipstchitzian global optimization procedure. User’s Guide. Research Report NM-R9522, National Centre for Mathematics and Computer Science ( CWI ), Amsterdam.

    Google Scholar 

  26. Pintér, J.D., Fels, M., Lycon, D.S., Meeuwig, J.W. and Meeuwig, D.J. (1995) An intelligent decision support system for assisting industrial wastewater management. Annals of Operations Research 58, 455–477.

    Article  MATH  Google Scholar 

  27. Pintér, J.D. (1996a) Global Optimization in Action. Kluwer Academic Publishers, Dordrecht Boston London.

    MATH  Google Scholar 

  28. Pintér, J.D. (1996b) LGO — A Program System for Continuous and Lipschitz Global Optimization. User’s Guide. Pintér Consulting Services, Halifax, N.S. (Revised in 1997.)

    Google Scholar 

  29. Pintér, J.D. (1996c) Continuous global optimization software: A brief review. Optima 52, 1–8.

    Google Scholar 

  30. Pintér, J.D. (1997a) LGO — A program system for continuous and Lipschitz global optimization. In: Bomze, I.M., Csendes, T., Horst, R. and Pardalos, P.M., eds. Development in Global Optimization; pp. 183–197. Kluwer Academic Publishers, Dordrecht Boston London.

    Google Scholar 

  31. Pintér, J.D. (1998) Computation of globally optimized point arrangements on a sphere: Model variants and illustrative results. (Submitted for publications.)

    Google Scholar 

  32. Pintér, J.D. and Pelot, R.P. (1998) Optimized container loading strategies. Research Report, Department of Industrial Engineering, DalTech, Halifax, N.S. (In preparation.)

    Google Scholar 

  33. Pintér, J.D., Stortelder, W.J.H. and de Swart, J.J.B. (1997) Computation of elliptic Fekete point sets. Research Report MAS-R9705, Centre for Mathematics and Computer Science ( CWI ), Amsterdam. (Submitted for publication. )

    Google Scholar 

  34. Saff, E.B. and Kuijlaars, A.B.J. (1997) Distributing many points on the sphere. The Mathematical Intelligencer 19, 5–11.

    Article  MathSciNet  MATH  Google Scholar 

  35. Schittkowski, K. (1996) Parameter Estimation in Dynamical Systems with EASY-FIT, User’s Guide. Mathematical Institute, University of Bayreuth.

    Google Scholar 

  36. Van der Molen, D.T. and Pintér, J. (1993) Environmental model calibration under different specifications: An application to the model SED. Ecological Modelling 68, 1–19.

    Article  Google Scholar 

  37. Vavasis, S.A. (1995) Complexity issues in global optimization: A survey. In: Horst, R. and Pardalos, P.M., eds. (1995); pp. 27–41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Pintér, J.D. (1998). A Model Development System for Global Optimization. In: De Leone, R., Murli, A., Pardalos, P.M., Toraldo, G. (eds) High Performance Algorithms and Software in Nonlinear Optimization. Applied Optimization, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3279-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3279-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3281-7

  • Online ISBN: 978-1-4613-3279-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics