Skip to main content

The modified absolute-value factorization norm for trust-region minimization

  • Chapter
High Performance Algorithms and Software in Nonlinear Optimization

Part of the book series: Applied Optimization ((APOP,volume 24))

Abstract

A trust-region method for unconstrained minimization, using a trustregion norm based upon a modified absolute-value factorization of the model Hessian, is proposed. It is shown that the resulting trust-region subproblem may be solved using a single factorization. In the convex case, the method reduces to a backtracking Newton linesearch procedure. The resulting software package is available as HSL_VF06 within the Harwell Subroutine Library. Numerical evidence shows that the approach is effective in the nonconvex case.

The work of the second author was supported by a National Science Foundation grant CCR-9625613 and by a Department of Energy grant DE-FG02-87ER25047-A004.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Ashcraft, R. G. Grimes, and J. G. Lewis. Accurate symmetric indefinite linear equation solvers. Technical report, Boeing Computer Services, Seattle, Washington, USA, 1995.

    Google Scholar 

  2. I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Constrained and unconstrained testing environment. ACM Transactions on Mathematical Software, 21 (1): 123 - 160, 1995.

    Article  MATH  Google Scholar 

  3. J. R. Bunch and L. C. Kaufman. Some stable methods for calculating inertia and solving symmetric linear equations. Mathematics of Computation, 31: 163 - 179, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. R. Bunch and B. N. Parlett. Direct methods for solving symmetric indefinite systems of linear equations. SIAM Journal on Numerical Analysis, 8 (4): 639 - 655, 1971.

    Article  MathSciNet  Google Scholar 

  5. S. H. Cheng and N. J. Higham. A modified Cholesky algorithm based on a symmetric indefinite factorization. Numerical Analysis Report No. 289, Manchester Centre for Computational Mathematics, Manchester, England, 1996.

    Google Scholar 

  6. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: a Fortran package for large-scale nonlinear optimization (Release A). Number 17 in Springer Series in Computational Mathematics. Springer Verlag, Heidelberg, Berlin, New York, 1992.

    Google Scholar 

  7. I. S. Duff and J. K. Reid. MA27: A set of Fortran subroutines for solving sparse symmetric sets of linear equations. Report R-10533, A ERE Harwell Laboratory, Harwell, UK, 1982.

    Google Scholar 

  8. I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse symmetric linear equations. ACM Transactions on Mathematical Software, 9 (3): 302 - 325, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. S. Duff and J. K. Reid. Exploiting zeros on the diagonal in the direct solution of indefinite sparse symmetric linear systems. A CM Transactions on Mathematical Software, 22 (2): 227 - 257, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  10. I. S. Duff, J. K. Reid, N. Munksgaard, and H. B. Neilsen. Direct solution of sets of linear equations whose matrix is sparse, symmetric and indefinite. Journal of the Institute of Mathematics and its Applications, 23: 235 - 250, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Fletcher. Factorizing symmetric indefinite matrices. Linear Algebra and its Applications, 14: 257 - 272, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. M. Gay. Computing optimal locally constrained steps. SIAM Journal on Scientific and Statistical Computing, 2 (2): 186 - 197, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. E. Gill and W. Murray. Newton-type methods for unconstrained and linearly constrained optimization. Mathematical Programming, 7 (3): 311 - 350, 1974.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. E. Gill, W. Murray, D. B. Ponceleon, and M. A. Saunders. Preconditioned for indefinite systems arising in optimization. SIAM Journal on Matrix Analysis and Applications, 13 (1): 292 - 311, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, London and New York, 1981.

    MATH  Google Scholar 

  16. D. Goldfarb. The use of negative curvature in minimization algorithms. Technical Report TR80-412, Department of Computer Sciences, Cornell University, Ithaca, New York, USA, 1980.

    Google Scholar 

  17. N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Solving the trust-region subproblem using the Lanczos method. Technical Report RAL-TR-97-028, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 1997.

    Google Scholar 

  18. J. Greenstadt. On the relative efficiencies of gradient methods. Mathematics of Computation, 21: 360 - 367, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  19. Harwell Subroutine Library. A catalogue of subroutines (release 12). AEA Technology, Harwell, Oxfordshire, England, 1995.

    Google Scholar 

  20. Harwell Subroutine Library. A catalogue of subroutines (release 13). AEA Technology, Harwell, Oxfordshire, England, 1998. To appear.

    Google Scholar 

  21. M. D. Hebden. An algorithm for minimization using exact second derivatives. Technical Report T. P. 515, AERE Harwell Laboratory, Harwell, UK, 1973.

    Google Scholar 

  22. N. J. Higham. Stability of the diagonal pivoting method with partial pivoting. Numerical Analysis Report No. 265, Manchester Centre for Computational Mathematics, Manchester, England, 1995.

    Google Scholar 

  23. C.-J. Lin and J. J. More. Incomplete Cholesky factorizations with limited memory. Technical Report ANL/MCS-P682-0897, Argonne National Laboratory, Illinois, USA, 1997.

    Google Scholar 

  24. J. J. More and D. C. Sorensen. Computing a trust region step. SIAM Journal on Scientific and Statistical Computing, 4 (3): 553 - 572, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. J. D. Powell, editor. Nonlinear Optimization 1981, London and New York, 1982. Academic Press.

    MATH  Google Scholar 

  26. H. E. Salzer. A note on the solution of quartic equations. Mathematics of Computation, 14 (71): 279 - 281, 1960.

    Article  MathSciNet  Google Scholar 

  27. A. Sartenaer. Automatic determination of an initial trust region in nonlinear programming. SIAM Journal on Scientific Computing, 18 (6): 1788 - 1804, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. B. Schnabel and E. Eskow. A new modified Cholesky factorization. SIAM Journal on Scientific Computing, 11 (6): 1136 — 1158, 1991.

    MathSciNet  Google Scholar 

  29. D. C. Sorensen. Newton’s method with a model trust modification. SIAM Journal on Numerical Analysis, 19 (2): 409 - 426, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  30. H. W. Turnbull. Theory of equations. Oliver and Boyd, Edinburgh and London, 1939.

    MATH  Google Scholar 

  31. C. Xu and J. Z. Zhang. A scaled optimal path trust region algorithm. Talk at the 16th International Symposium on Mathematical Programming in Lausanne, Switzerland, August 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Gould, N.I.M., Nocedal, J. (1998). The modified absolute-value factorization norm for trust-region minimization. In: De Leone, R., Murli, A., Pardalos, P.M., Toraldo, G. (eds) High Performance Algorithms and Software in Nonlinear Optimization. Applied Optimization, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3279-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3279-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3281-7

  • Online ISBN: 978-1-4613-3279-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics