Skip to main content

Adaptive Precision Control in Quadratic Programming with Simple Bounds and/or Equalities

  • Chapter
High Performance Algorithms and Software in Nonlinear Optimization

Part of the book series: Applied Optimization ((APOP,volume 24))

Abstract

Many algorithms for solution of quadratic programming problems generate a sequence of simpler auxiliary problems whose solutions approximate the solution of a given problem. When these auxiliary problems are solved iteratively, which may be advantageous for large problems, it is necessary to define precision of their solution so that the whole procedure is effective. In this paper, we review our recent results on implementation of algorithms with precision control that exploits the norm of violation of Karush-Kuhn-Tucker conditions.

The research has been supported by CNPq, FAEP/UNICAMP, FAPESP grants 95/6574-9, 97/4338-1, 97/4471-3 and by grants GACR No.201/97/0421 and No. 105/95/1273.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.

    MATH  Google Scholar 

  2. O. Axelsson & G. Lindskog, On the rate of convergence of the preconditioned conjugate gradient method, Num. Math., 48, pp. 499 - 523, 1986.

    MathSciNet  MATH  Google Scholar 

  3. D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, London, 1982.

    MATH  Google Scholar 

  4. R. H. Bielschowsky, A. Friedlander, F. A. M. Gomes, J. M. Martmez & M. Raydan, An adaptive algorithm for bound constrained quadratic minimization, Technical Report, Institute of Mathematics, State University of Campinas, 1996. To appear in Investigation Operativa.

    Google Scholar 

  5. A. R. Conn, N. I, M. Gould Ph. L. Toint, A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds, SIAM J. Num. Anal., 28, pp. 545 - 572, 1991.

    MathSciNet  MATH  Google Scholar 

  6. A. R. Conn, N. I. M. Gould k. Ph. L. Toint, LANCELOT: a Fortran package for large scale nonlinear optimization, Springer Verlag, Berlin, 1992.

    Google Scholar 

  7. Z. Dostal, Duality based domain decomposition with proportioning for the solution of free-boundary problems, Journal of Computational and Applied Mathematics, 63, pp. 203 - 208, 1995.

    Article  MathSciNet  Google Scholar 

  8. Z. Dostal, Duality based domain decomposition with inexact subproblem solver for contact problems, in Contact Mechanics II, eds. M.H. Alibiadi, C. Alessandri, Wessex Inst, of Technology, Southampton pp. 461 - 468, 1995.

    Google Scholar 

  9. Z. Dostal, Box constrained quadratic programming with proportioning and projectionsi, SIAM Journal on Optimization, 7, pp. 871 - 887, 1996.

    Google Scholar 

  10. Z. Dostal, A. Friedlander, S. A. S.ntos & J.Malik, Analysis of semicoercive contact problems using symmetric BEM and augmented Lagrangians, Eng. Anal. Bound. El. 18, pp. 195 - 201, 1996.

    Google Scholar 

  11. Z. Dostal, A. Friedlander & S. A. Santos, Augmented Lagrangians with adaptive precision control for quadratic programming with simple bounds and equality constraints, Technical Report RP 74/96, Institute of Mathematics, Statistics and Scientific Computation, University of Campinas, 1996.

    Google Scholar 

  12. Z. Dostal, A. Friedlander & S. A. Santos, Analysis of block structures by augmented Lagrangians with adaptive precision control, Proceedings of GEOMECHANICS’ 96, A.A. Balkema, Rotterdam, pp. 175 - 180, 1996.

    Google Scholar 

  13. Z. Dostal, A. Friedlander & S. A. Santos, Augmented Lagrangians with adaptive precision control for quadratic programming with equality constraints, Comp. Appl. Optimization, in print.

    Google Scholar 

  14. Z. Dostal, A. Friedlander & S. A. Santos, Solution of contact problems using subroutine BOX-QUACAN, Technical Report RP 31/97, Institute of Mathematics, Statistics and Scientific Computation, University of Campinas, 1997. To appear in Investigation Operativa.

    Google Scholar 

  15. Z. Dostal, A. Friedlander & S. A. Santos, Solution of coercive and semicoercive contact problems by FETI domain decomposition, Contemporary Mathematics, 218, pp. 82 - 93, 1998.

    MathSciNet  Google Scholar 

  16. A. Friedlander & J. M. Martinez, On the maximization of concave quadratic functions with box constraints, SIAM J. Opt., 4, pp. 177 - 192, 1994.

    MATH  Google Scholar 

  17. A. Friedlander, J. M. Martinez & M. Raydan, A new method for large scale box constrained quadratic minimization problems, Optimization Methods and Software, 5, pp. 57 - 74, 1995.

    Article  Google Scholar 

  18. A. Friedlander, J. M. Martinez & S. A. Santos, A new trust region algorithm for bound constrained minimization, Applied Mathematics & Optimization, 30, pp. 235 - 266, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Glowinski, P. Le Tallec, Augmented Lagrangians and Operator Splitting Methods, SIAM, Philadelphia, 1989.

    Book  Google Scholar 

  20. L. Grippo and S. Lucidi. A differentiable exact penalty function for bound constrained quadratic programming problems, Optimization, 22, pp. 557 - 578, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  21. W.W. Hager, Dual techniques for constrained optimization, JOTA, 55, pp. 37- 71, 1987.

    Google Scholar 

  22. W.W. Hager, Analysis and implementation of a dual algorithm for constrained optimization, JOTA, 79, pp. 427 - 462, 1993.

    Article  MATH  Google Scholar 

  23. M. R. Hestenes, Multiplier and gradient methods, JOTA, 4, pp. 303 - 320, 1969.

    Article  MATH  Google Scholar 

  24. M. Kocvara & J. Zowe, An iterative two-step algorithm for linear complementarity problems, Numer. Math., 68, pp. 95 - 106, 1994.

    MathSciNet  MATH  Google Scholar 

  25. J. J. More & G. Toraldo, On the solution of large quadratic programming problems with bound constraints, SIAM Journal on Optimization, 1, pp. 93 - 113, 1993.

    Article  MathSciNet  Google Scholar 

  26. M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Optimization, ed. R. Fletcher, Academic Press, New York, pp. 283 - 298, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers, Boston

About this chapter

Cite this chapter

Dostál, Z., Friedlander, A., Santos, S.A. (1998). Adaptive Precision Control in Quadratic Programming with Simple Bounds and/or Equalities. In: De Leone, R., Murli, A., Pardalos, P.M., Toraldo, G. (eds) High Performance Algorithms and Software in Nonlinear Optimization. Applied Optimization, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3279-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3279-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3281-7

  • Online ISBN: 978-1-4613-3279-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics