Skip to main content

Existence and Uniqueness for Boundary Value Contact Problems

  • Chapter
Book cover Partial Differential and Integral Equations

Abstract

Boundary value contact problems (BVCP) are the problems of mathematical physics, whose statement contains some conditions at particular points or lines of the boundary. Such problems appear when describing acoustic scattering on elastic plates or shells with any non-homogeneities. For a very wide class of the BVCP, we prove uniqueness theorems. We also prove the existence for one particular model.

The second author was supported in part by The University of Tennessee at Chattanooga Center of Excellence in Computer Applications Scholarship and The Faculty Development Grant. This is an expanded version of a lecture given at the ISAAC ’97 Conference, University of Delaware, June 3–7, 1997

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colton, D., Kress, R.: Integral equation methods in scattering theory. A Wiley-Interscience Publication, John Wiley & Sons, New York, 1983.

    Google Scholar 

  2. Kousov, D.P.: On a solution of the H equation for a half-plane with boundary conditions containing high order derivatives. J. Appl. Math. Mech. 31 (1967), 164–170.

    Google Scholar 

  3. Rebinsky, D.A., Norris, A.N.: Acoustic and flexural wave scattering from a three-member junction. J. Acoust. Soc. America 98 (1995), 3309–3319.

    Article  Google Scholar 

  4. Photiadis, D.M.: The effect of irregularity on the scattering of acoustic waves from a ribbed plate. J. Acoust. Soc. America 91 (1992), 1897–1903.

    Article  Google Scholar 

  5. Engineer, J.G., Abrahams, I.D.: The radiation of sound waves from a lightly loaded finite elastic shell, I: duct and shell resonances for linear motions. J. Sound Vibration 153 (1992), 291–310.

    Article  MATH  Google Scholar 

  6. Kriegsmann, G.A.: Acoustic pulse scattering by baffled membranes. J. Acoust. Soc. America 79 (1986), 1–8.

    Article  MathSciNet  MATH  Google Scholar 

  7. Andronov, I.V., Belinskiy, B.P.: Acoustic scattering by a narrow crack in an elastic plate. Wave Motion 24 (1996), 101–115.

    Article  MATH  Google Scholar 

  8. Belinskiy, B.P.: Sound radiation from a plate with protruding stiffener. Soviet Physics-Acoustics 24 (1978), 183–187.

    Google Scholar 

  9. Andronov, I.V.: The propagation of sound in a fluid under the elastic plate with a crack. J. Appl. Math. Mech. 57 (1993), 363–369.

    Article  MathSciNet  Google Scholar 

  10. Reed, M., Simon, B.: Methods of modern math, physics 3: Scattering theory. Academic Press, New York, 1979.

    Google Scholar 

  11. Lax, P.D., Phillips, R.S.: Scattering Theory. Academic Press, New York, 1967.

    MATH  Google Scholar 

  12. Belinskiy, B.P., Kousov, D.P.: The optical theorem for the plate-liquid system. Soviet Physics-Acoustics 26 (1980), 8–11.

    Google Scholar 

  13. Kriegsmann, G.A., Norris, A.N., Reiss, E.L.: An “optical” theorem for acoustic scattering by baffled flexible surfaces. J. Sound Vibration 99 (1985), 301–307.

    Article  MathSciNet  MATH  Google Scholar 

  14. Sommerfeld, A.: Vorlesungen über theoretische Physik VI. Dieterich, Wiesbaden, 1950.

    Google Scholar 

  15. Apelcin, V.F., Kyurkchan, A.G.: Analytical properties of wave fields. Moscow State Univ., Moscow, 1990 ( Russian).

    Google Scholar 

  16. Andronov, I.V., Belinskiy, B.P.: Sommerfeld’s formula and uniqueness for the boundary value contact acoustic problems. Preprint, 1997.

    Google Scholar 

  17. Andronov, I.V., Belinskiy, B.P.: Acoustic scattering on an elastic plate described by the Timoshenko model: contact conditions and the uniqueness of the solution. J. Acoust. Soc. America, to appear.

    Google Scholar 

  18. Andronov, I.V., Belinskiy, B.P., Dauer, J.P.: The connection between the scattering diagram and the amplitudes of the surface waves for acoustic scattering by a baffled flexible plate. J. Sound Vibration 195 (1996), 667–673.

    Article  Google Scholar 

  19. Belinskiy, B.P. : Fredholm property of boundary-contact problems of acoustics. Soviet Phys. Doklady 29 (1984), 797–799.

    Google Scholar 

  20. Belinskiy, B.P.: Boundary-contact problem of acoustics in an infinite domain. Soviet Phys. Doklady 30 (1985), 560–562.

    Google Scholar 

  21. Andronov, I.V.: Application of zero-range models to the problem of diffraction by a small hole in elastic plate. J. Math. Phys. 34 (1993), 2226–2241.

    Article  MathSciNet  MATH  Google Scholar 

  22. Erdelyi, A.: Asymptotic expansions. Dover Publ., Inc., New York, 1956.

    MATH  Google Scholar 

  23. Belinskiy, B.P., Kousov, D.P.: Green’s type formulas for flexurally vibrating plates. Soviet Physics-Acoustics 27 (1981), 394–398.

    Google Scholar 

  24. Taylor, M.E.: Pseudodifferential operators. Princeton Univ. Press, Princeton, 1981.

    MATH  Google Scholar 

  25. Hörmander, L.: The analysis of linear partial differential operators, I. Distribution theory and Fourier analysis. Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  26. Gakhov, F.D. : Boundary value problems. Nauka, Moscow, 1977 (Russian)

    MATH  Google Scholar 

  27. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National Bureau of Standards. Applied Mathematics Series 55, U.S. Government Pr. Office, Washington, D.C., 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Andronov, I.V., Belinskiy, B.P. (1999). Existence and Uniqueness for Boundary Value Contact Problems. In: Begehr, H.G.W., Gilbert, R.P., Wen, GC. (eds) Partial Differential and Integral Equations. International Society for Analysis, Applications and Computation, vol 2. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-3276-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-3276-3_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-3278-7

  • Online ISBN: 978-1-4613-3276-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics