Sorption of Actinides from Aqueous Solutions Under Environmental Conditions

  • G. W. Beall
  • B. Allard


The sorption of americium, neptunium, and plutonium has been studied on a suite of thirty pure minerals and one granite as a function of solution pH, salinity, and redox potential. Three major factors controlling sorption have been identified. These three major factors are pH (for hydrolyzable ions), chemi-sorption reactions at the surface of minerals that contain strong complexing ions, and redox reactions with ferrous iron contained in various minerals. It appears that simple cation exchange does not play a significant role in the pH range of most interest in groundwaters. The implications of these findings for nuclear waste disposal are discussed. Sweden.


Distribution Coefficient Igneous Rock Valence State Nuclear Waste Disposal Pure Mineral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.F. Relyea and R.J. Serne, “Controlled Sample Program Publication Number 2: Inter-Laboratory Comparison of Batch Kd Values”, PNL-2872 UC-70, Pacific Northwest Laboratories, Richland (1979).CrossRefGoogle Scholar
  2. 2.
    B. Allard, G.W. Beali and T. Krajewski, The sorption of actinides in igneous rocks, Nucl. Techn. 49 (8): 474 (1980).Google Scholar
  3. 3.
    G.W. Beali and B. Allard, Trans. Am. Nucl. Soc. Ann. Meeting 32: 164 (1979).Google Scholar
  4. 4.
    B. Allard and G.W. Beali, work in progress.Google Scholar
  5. 5.
    C. Francis and D.F. Grigal, Soil Sci. 112: 17 (1971).CrossRefGoogle Scholar
  6. 6.
    C.M. Bower and J.O. Goertzen, Soil Sci. 87: 289 (1959).CrossRefGoogle Scholar
  7. 7.
    G. Jacks, “Groundwater at Depth in Granite and Gneisses”, KBS Technical Report 88, Kärnbränslesäkerhet, Stockholm (1978).Google Scholar
  8. 8.
    M. Pourbaix, “Atlas of Electrochemical Equilibria”, Pergamon Press, New York (1966).Google Scholar
  9. 9.
    B. Allard, J. Rydberg, H. Kipitski and B. Torstenfält, Disposal of radioactive waste in granite bedrock, in: ACS Symp. Ser. 100, American Chem. Soc., Washington, D.C. (1979), 47.Google Scholar
  10. 10.
    Y. Tarsy and R.M. Garrels, Geochim. Cosmochim. Acta 38: 1101 (1974).CrossRefGoogle Scholar
  11. 11.
    I. Grenthe, Determinations of redox potentials in groundwater from Stripa and Finnsjön, App. 5 in: “Copper as Encapsulation Material for Unreprocessed Nuclear Fuel Work”, KBS Technical Report 90, Kärnbränslesäkerhet, Stockholm (1978).Google Scholar
  12. 12.
    S. Ahrland, “Structure and Bonding, Volume 5”, Springer- Verlag, Berlin (1978).Google Scholar
  13. 13.
    S. Ahrland, J.O. Liljenzin and J. Rydberg, Actinide solution Chemistry, in: “Comprehensive Inorganic Chemistry, Volume 5”, Pergamon Press, Oxford (1973).Google Scholar
  14. 14.
    B. Allard, H. Kipatsi and J.O. Liljenzin, J. Inorg. Nucl. Chem. (1980), in pressGoogle Scholar
  15. 15.
    B. Allard, unpublished data.Google Scholar
  16. 16.
    T. Paces, Geochim. Cosmochim. Acta 33: 591 (1969).CrossRefGoogle Scholar
  17. 17.
    G.L. Johnson and L.M. Toth, “Plutonium (IV) and Thorium (IV) Hydrous Polymer Chemistry”, 0RNL/RM-6365, Oak Ridge National Laboratory, Oak Ridge, TN (1978).Google Scholar
  18. 18.
    L.G. Sillen, “Stability Constants of Metal-Ion Complexes”, Chem. Soc. Spec. Publ. No. 17 and 24, The Chemical Society, London ( 1964, 1971 ).Google Scholar
  19. 19.
    C.F. Baes and R.E. Mesmer, “The Hydrolysis of Cations”, John Wiley and Sons, Toronto (1976).Google Scholar
  20. 20.
    B. Allard and G.W. Beall, work in progress.Google Scholar
  21. 21.
    I.E. Staric, “Grundlagen der Radiochemie”, Akademie-Verlag, Berlin (1963).Google Scholar
  22. 22.
    F. Kepak, Chem. Rev. 71: 357 (1971).CrossRefGoogle Scholar
  23. 23.
    M. Haissinsky, “La chimie nucleaire et ses applications”, Masson, Paris (1957).Google Scholar
  24. 24.
    E. Matijevic, M.B. Abramson, R.H. Ottewill, K.F. Schultz and M. Kerker, J. Phys. Chem. 65: 1724 (1961).CrossRefGoogle Scholar
  25. 25.
    P.H. Tewari and W. Lee, J. Colloid Interface Sci. 52: 77 (1975).CrossRefGoogle Scholar
  26. 26.
    R.O. James and T.W. Healy, J. Colloid Interface Sci. 40:43, 53, 65 (1972).CrossRefGoogle Scholar
  27. 27.
    T. Krajewski, G.W. Beall, B. Allard and J. Peterson, Trans. Am. Nucl. Soc. Ann. Meeting 32: 168 (1979).Google Scholar
  28. 28.
    B. Allard, H. Kipatsi, B. ans Torstenfält, “Sorption of Long- Lived Radionuclides in Clay and Rock. Part II”, KBS Technical Report 98, Kärnbränslesäkerhet, Stockholm (1978).Google Scholar
  29. 29.
    E. Bondietti, private communication.Google Scholar
  30. 30.
    G.W. Beall, D. O’Kelley and B. Allard, “An Autoradiographic Study of Actinide Sorption on Climax Stock Granite”, ORNL report #5617, Oak Ridge National Laboratories, Oak Ridge, TN (1980).CrossRefGoogle Scholar
  31. 31.
    P. Fritz, J.F. Barker and J.E. Gale, “Geochemistry and Isotope Hydrology of Groundwaters in the Stripa Granite”, LBL-8285, Lawrence Livermore Laboratory, Berkeley (1979).Google Scholar
  32. 32.
    R.M. Smith and A.E. Martell, “Critical Stability Constants, Volume 4: Inorganic Complexes”, Plenum Press, New York (1976).Google Scholar
  33. 33.
    R.J. Lemire and P.R. Tremaine, “Uranium and Plutonium Equilibria in Aqueous Solution to 200°C”, AECL-6655, Atomic Energy of Canada Limited, in press.Google Scholar
  34. 34.
    G. Choppin, Trans. Am. Nucl. Soc. Ann. Meeting 32: 166 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • G. W. Beall
    • 1
    • 2
  • B. Allard
    • 1
    • 3
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.Radian CorporationAustinUSA
  3. 3.Department of Nuclear ChemistryChalmers University of TechnologyGöteborgSweden

Personalised recommendations